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Abstract. Given a finite group action on a smooth manifold, we study the following question: if
two equivariant diffeomorphisms are isotopic, must they be equivariantly isotopic? Birman–Hilden
and Maclachlan–Harvey proved the answer is “yes” for most surfaces. By contrast, we give a general
criterion in higher dimensions under which there are many equivariant diffeomorphisms which are
isotopic but not equivariantly isotopic. Examples satisfying this criterion include branched covers
of split links and “stabilized” branched covers. We prove the result by constructing an invariant
valued in the homology of a certain infinite cover of the manifold. We give applications to outer
automorphism groups of free products and to group actions on manifolds which fiber over the circle.

1. Introduction

1.1. The main question and result. Let M be a closed oriented smooth manifold, and G a finite
group of orientation-preserving diffeomorphisms of M . We call a diffeomorphism of M equivariant
if it commutes with G. Given two equivariant diffeomorphisms of M , we can ask whether they are
isotopic, or we can ask whether they are equivariantly isotopic, i.e. isotopic through equivariant
diffeomorphisms. Our goal in this paper is to measure the difference between these two equivalence
relations.

More formally, let Diff(M) denote the group of orientation-preserving diffeomorphisms of M ,
and let Diff(M)G denote the subgroup of equivariant diffeomorphisms. Let Mod(M) denote
π0(Diff(M)), i.e. the group of isotopy classes of orientation-preserving diffeomorphisms, also called
the mapping class group of M . Let ΓG(M) denote π0(Diff(M)G), i.e. the group of equivariant
isotopy classes of equivariant diffeomorphisms. Then the inclusion Diff(M)G ↪→ Diff(M) induces a
map PG : ΓG(M) → Mod(M). We then ask:

Question 1.1. Is the map PG : ΓG(M) → Mod(M) injective? If not, how large is the kernel?

A remarkable theorem of Birman–Hilden [BH73] and Maclachlan–Harvey [MH75] says that if
M is a closed oriented surface of genus g ≥ 2, then PG is injective. By contrast, we showed in
previous work [Luc25] that for many finite group actions on closed oriented 3-manifolds, the kernel
Ker(PG) is infinite, answering a question of Margalit–Winarski [MW21, Ques 11.4]. Our main
theorem strengthens this result and extends it to all dimensions n ≥ 3.

Theorem A. Let M be a closed oriented connected smooth manifold of dimension n ≥ 3, and let G
be a finite group of orientation-preserving diffeomorphisms. Let M◦ ⊆M denote the set of points
whose G-stabilizer is trivial. Assume that:

• For some k > 0, the quotient manifold M◦/G is diffeomorphic to a k-fold connected sum
Q0# · · ·#Qk−1 where π1(Qi) is nontrivial for each i.

• For some g0 ∈ G, the set of fixed points Fix(g0) ⊆ M has a nonempty codimension 2
orientable component B whose homology class in Hn−2(M ;Z/ℓZ) is trivial for some ℓ > 1.

Then if k ≥ 3:

(i) the kernel of the map PG : ΓG(M) → Mod(M) contains a virtual free product, and
(ii) the kernel Ker(PG) is not finitely generated.
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In part (i), a virtual free product is a group which is virtually isomorphic to a free product of
two nontrivial groups; here we say that two groups G1 and G2 are virtually isomorphic if there are
finite index subgroups Hi ≤ Gi and finite normal subgroups Fi ≤ Hi such that H1/F1

∼= H2/F2.
Note that Theorem A reduces to the case k = 3, since for higher k the quotient can be written as
Q0#Q1#Q where Q = Q2# · · ·#Qk−1.

The surprising aspect of Theorem A is not just that Ker(PG) is nontrivial, but also that Ker(PG)
is so large at this level of generality. Indeed, the bulk of this paper is devoted to proving part (ii).
The proof requires us to find an invariant that can distinguish many equivariant diffeomorphisms
which are all isotopically trivial; we accomplish this with an “obstruction map” valued in the
homology of a certain infinite cover of M . This invariant is simple to describe, but finding even one
example where this invariant is nontrivial requires a careful and explicit computation. The proof of
part (i) is simpler, and serves as a warmup to the proof of part (ii).

We give more details of the proof in Section 1.6 below. Before that, we will describe examples of
group actions satisfying the hypotheses of Theorem A, and give two applications of Theorem A.

1.2. Example: Branched covers of links. A simple way to build examples for Theorem A in
all dimensions n ≥ 3 is to take branched covers of links in Sn. We say that a surjective map of
smooth manifolds p :M → N is a finite regular branched cover if there is a compact codimension 2
submanifold C ⊆ N such that

• the restriction of p to M \ p−1(C) → N \ C is a finite-sheeted regular cover, and
• for each x ∈ p−1(C), we can choose coordinates around x and p(x) valued in C× Rn−2 in
which p is of the form (z, x) 7→ (zm, x) for some integer m ≥ 2.

A link is the image of a smooth embedding Sn−2 ⊔ · · · ⊔ Sn−2 ↪→ Sn. Given a link L in Sn and
an integer d ≥ 2, there is a closed oriented smooth manifold ML,d and a finite regular branched
cover pL,d :ML,d → Sn with branch set L and deck group G = Z/dZ (see e.g. [Ran98, §27], which
constructs ML,d in the topological category but can be easily adapted to the smooth category).

We say a link L is k-split if there are k disjoint closed n-disks D0, . . . , Dk−1 ⊆ Sn such that
Di ∩ L is a nonempty union of components of L. Given a k-split link L, we claim that the action of
G on M =ML,d satisfies the hypotheses of Theorem A. Indeed, let Qi be the n-manifold obtained
by capping the boundary of Di \ L with an n-disk. Then Sn \ L is diffeomorphic to the connected
sum Q0# · · ·#Qk−1. Since H1(Qi) is nontrivial for each i by Alexander duality, the first hypothesis
of Theorem A is satisfied. For the second hypothesis, we can take B to be the preimage of any
component Li of L; then B will be homologically trivial in M since its meridian will be nontrivial
in H1(M \B) (see Lemma 3.3). Thus Theorem A implies:

Corollary B. Let L be a k-split link in Sn for n ≥ 3, and let M =ML,d be the associated branched
cover with deck group G = Z/dZ. If k ≥ 3, then Ker(PG) is not finitely generated.

The simplest case of Corollary B is when d = 2 and L is the k-component unlink in Sn (i.e. each
component is isotopic to the standard embedding Sn−2 ↪→ Sn). In this case, M ∼= (S1 × Sn−1)#k−1

and the action of G = Z/2Z on M is a generalization of the hyperelliptic involution on a genus k− 1
surface (which was the example first studied by Birman and Hilden). In [Luc25], we showed that
Ker(PG) is not finitely generated for the double cover of the 3-component unlink in S3 using an
algebraic proof much different from that of Theorem A.

1.3. Example: Stabilized actions and branched covers. Another family of examples for
Theorem A come from “stabilizing” group actions and branched covers, as follows.

Suppose P is a closed smooth n-manifold and G is a finite group of diffeomorphisms. For 1 ≤ i ≤ k,
let Qi be any closed oriented connected smooth n-manifold with π1(Qi) nontrivial, and let Pi be
the disjoint union of d copies of Qi, where d = |G|. We then define a closed smooth n-manifold
M by taking an equivariant connected sum of P with each Pi, meaning that we remove an open
disk from each component of Pi, remove a free G-orbit of open disks from P , and glue together the
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resulting boundary components (some care must be taken to preserve smoothness and orientability,
as in Section 2.3). The action of G on P naturally extends to an action on M by permuting the
components of each Pi. We call M a k-fold stabilization of the action of G on P .

If q : P → Q is a finite regular branched cover with deck group G, andM is a k-fold stabilization of
the action of G on P , then we get an induced branched cover p :M → N where N = Q#Q1 · · ·#Qk.
We call the branched cover p a k-fold stabilization of the branched cover q. Theorem A implies:

Corollary C. Let P and Q be closed oriented connected smooth manifolds of dimension n ≥ 3, and
let q : P → Q be a finite regular branched cover with branch set C ⊆ Q and deck group G. Assume
that that p−1(C) represents a trivial element of Hn−2(P ;Z/ℓZ) for some ℓ > 1. Let p : M → N
be a k-fold stabilization of q. Then if k ≥ 2, the kernel of PG : ΓG(M) → Mod(M) is not finitely
generated.

To deduce Corollary C from Theorem A, we use the fact that Q \C is not simply connected. This
is because the unbranched cover P \ q−1(C) → Q \ C is classified by a surjection π1(Q \ C) → G.

For a concrete family of examples in even dimensions, we can take P to be a degree d cyclic cover
of Q = CPn/2 branched over a smooth degree m complex hypersurface C, where d is a proper divisor
of m. To check that the assumption of Corollary C holds, recall first that π1(CPn/2\C) ∼= Z/mZ
and is generated by a meridian of C (see [Cog11]). Then π1(P \ q−1(C)) ∼= Z/ℓZ, where ℓ = m/d.
Thus H1(P \ q−1(C);Z/ℓZ) is isomorphic to Z/ℓZ and is generated by a meridian of q−1(C). This
implies that q−1(C) must represent a trivial homology class in Hn−2(P ;Z/ℓZ) (this can be seen by
adapting the proof of Lemma 3.3).

1.4. Application: Symmetric automorphism groups of free products. We can apply
Theorem A to study certain natural maps arising in group theory.

Let L = L1 ∗ · · · ∗ Lk be any free product of groups. We define SymAut(L) to be the group of
symmetric automorphisms of L, i.e. the group of automorphisms of L sending each Li to a conjugate
of some Lj , and we define SymOut(L) to be the image of SymAut(L) in Out(L). In the case that
each Li is freely indecomposable and not infinite cyclic, SymAut(L) is in fact the full automorphism
group Aut(L) by the Kurosh subgroup theorem. In the case that L is the free group Fk, the group
SymAut(Fk) arises naturally in the study of the braid group Bk, as Bk acts on the fundamental
group of the punctured disk by symmetric automorphisms.

Given integers k, d > 1, we define the free product

Hk,d := (Z/dZ) ∗ · · · ∗ (Z/dZ)︸ ︷︷ ︸
k times

.

Then the natural surjection Fk → Hk,d induces maps

Q̂k,d : SymAut(Fk) → SymAut(Hk,d)

Qk,d : SymOut(Fk) → SymOut(Hk,d).

As a surprising application of their work on Question 1.1, Birman–Hilden [BH73] showed that the

map Q̂k,d restricts to an embedding Bk ↪→ SymAut(Hk,d), answering a question of Magnus 1 (see

also [MW21, §7]). Apart from this, it appears that the kernels of the maps Q̂k,d and Qk,d are not
well-studied. These kernels contain some obvious elements (e.g. conjugating one generator by the
dth power of another), but it is not clear which elements generate these kernels or what finiteness
properties these kernels possess. Using Theorem A, we show:

Theorem D. Let k ≥ 3 and d ≥ 2. Then the groups Ker(Q̂k,d) and Ker(Qk,d) are not finitely
generated.

1Magnus later applied this result in [Mag80].
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Theorem D is sharp. For d = 1, the maps Q̂k,d and Qk,d are trivial, and the groups SymAut(Fk)
and SymOut(Fk) are finitely generated (see e.g. [McC86]). For k = 1, we have that SymAut(Z) and
SymOut(Z) are isomorphic to Z/2Z. For k = 2, the group Inn(F2) has finite index in SymAut(F2)

(again see e.g. [McC86]), which implies that Ker(Q̂k,d) is not finitely generated but Ker(Qk,d) is
finite.

Following our previous work in [Luc25], we give a topological proof of Theorem D. The key idea is
to apply Theorem A to finite covers pk,d :Mk,d → S3 branched over the k-component unlink Ck with
deck group G = Z/dZ. Let Diff(S3, Ck) denote the group orientation-preserving diffeomorphisms of
S3 preserving Ck setwise, and let Mod(S3, Ck) = π0(Diff(S3, Ck)). Then the relationship between
the cover p = pk,d and the group SymOut(Fk) comes from a theorem of Wattenberg [Wat72], which
says that the action of Mod(S3, Ck) on π1(S

3 \ Ck) induces an isomorphism

Mod(S3, Ck) ∼= SymOut(Fk)

(the analogous result holds in the topological category by work of Goldsmith [Gol81], and both
results build off the work of Dahm [Dah62]). The cover p induces an orbifold structure Op on

S3, and Mod(S3, Ck) also acts on the orbifold fundamental group πorb1 (Op) ∼= Hk,d. This yields a
relationship between Ker(Qk,d) and Ker(PG) which we can use to prove Theorem D.

In [Luc25], we computed a finite normal generating set of Ker(Qk,2) using results of McCullough–
Miller [MM96] on the groups SymOut(Fk) and SymOut(Hk,d). It would be interesting to determine
whether the groups Ker(Qk,d) have a finite normal generating set for all k and d using our topological
framework.

1.5. Application: Trivial bundles with a nontrivial fiberwise action. As explained in
[Luc25], Theorem A provides many examples of fiber bundles E → S1 equipped with a fiberwise
group action such that E is smoothly trivial, but not equivariantly trivial.

Let M be a closed oriented n-manifold and G a finite group of diffeomorphisms satisfying the
hypotheses of Theorem A. Then the non-injectivity of the map PG implies that the map

P̂G : π1(BDiff(M)G) → π1(BDiff(M))

is not injective, where B denotes the classifying space. Conjugacy classes in π1(BDiff(M)) cor-
respond to isomorphism classes of M -bundles over S1. Conjugacy classes in π1(BDiff(M)G)
correspond to isomorphism classes of M -bundles over S1 with structure group Diff(M)G; these are
bundles for which the action of G on M extends to a fiberwise action on the total space. Thus,

nontrivial elements in Ker(P̂G) yield bundles which are smoothly trivial, but not equivariantly
trivial, i.e. not equivariantly isomorphic to the product S1 ×M equipped with the standard action
of G in each fiber.

The same reasoning tells us that elements in the kernel of the map πk(Diff(M)G) → πk(Diff(M))
correspond to M -bundles over Sk+1 which are smoothly but not equivariantly trivial. Our con-
struction of elements in the kernel for k = 0 does not obviously extend to higher k, so we naturally
pose:

Problem 1.2. Let G be a finite group of diffeomorphisms of a closed oriented smooth n-manifold
M . For k ≥ 1, construct elements in the kernel of the map πk(Diff(M)G) → πk(Diff(M)) (or show
this map is injective).

1.6. Proof idea. As mentioned above, the surprising aspect of Theorem A is that Ker(PG) is so
large. In fact, if one only wishes to show that Ker(PG) is nontrivial, there is a simple strategy to do
so. Namely, for any g0 ∈ G, any equivariant diffeomorphism must preserve the fixed set Fix(g0) ⊆M
setwise, and an element of Ker(PG) may restrict to a nontrivial mapping class of Fix(g0) (for
example, this occurs for the hyperelliptic involution on the 2-torus [MW21, §2]). However, if the
mapping class group of Fix(g0) is finite (such as for branched covers of links in Sn for n ≤ 5), then
this obstruction only gives a finite lower bound on the size of Ker(PG). The elements of Ker(PG)
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that we construct in the proof of Theorem A will in fact act trivially on the fixed points of any
g0 ∈ G.

The elements of Ker(PG) that we use to prove Theorem A are lifts of “summand slides,” defined as
follows. Choose a splitting ofM◦/G as a connected sum N1#N2, and let Σ ⊆M◦/G be a separating
(n−1)-sphere realizing this decomposition. Let δ be a loop in N1 based at Σ. Informally, a summand
slide is a diffeomorphism of M◦/G obtained by dragging Σ along δ, similar to a point-pushing
diffeomorphism of a surface.

Part (i) of Theorem A has a fairly direct proof. We find loops δ1 and δ2 in M◦/G which are
nontrivial in π1(M

◦/G), but lift to trivial elements of π1(M). We then let fi be a summand slide of

M◦/G along δi, and let f̃i be a lift of fi to an equivariant diffeomorphism of M . A key property
of summand slides is that up to finite order, they are determined by their action on π1. We show

that f1 and f2 generate a free product in Out(π1(M
◦/G)), which implies that f̃1 and f̃2 generate

a virtual free product in ΓG(M), but f̃1 and f̃2 act trivially on π1(M), which implies that they
generate a finite subgroup of Mod(M).

Part (ii) is more difficult, and its proof comprises the majority of this paper. Let Mod(M,B) =
π0(Diff(M,B)), where Diff(M,B) is the group of orientation-preserving diffeomorphisms that
preserve B setwise. Let ModG(M,B) ≤ Mod(M,B) and ModG(M) ≤ Mod(M) each denote the
subgroup of mapping classes with an equivariant representative. Then the natural forgetful map
Mod(M,B) → Mod(M) restricts to a map

FG : ModG(M,B) → ModG(M).

Then a finite index subgroup of Ker(PG) will surject onto Ker(FG), so it’s enough to show that
Ker(FG) is not finitely generated.

We construct an obstruction map

φ : Ker(FG) → Hn−2(M̃, B̃;Z/ℓZ)

where M̃ is a certain infinite-sheeted cover of M and B̃ is a component of the preimage of B in M̃ .

The homology group Hn−2(M̃, B̃;Z/ℓZ) is non-finitely generated, so the strategy of the proof is to
find an infinite linearly independent subset of the image of φ.

The map φ can be computed as follows: suppose α ∈ Ker(FG) is represented by an equivariant
diffeomorphism f : M → M that preserves B setwise. Then there is an isotopy f ≃ idM . By
tracking B under this isotopy, we get a map B × [0, 1] → M mapping B × {0} and B × {1}
diffeomorphically onto B. We show that this lifts to a map B × [0, 1] → M̃ mapping B × {0} and

B × {1} diffeomorphically onto B̃. This lifted map yields a homology class in Hn−1(M̃, B̃;Z/ℓZ).
The most difficult step is to find at least one element α0 ∈ Ker(FG) such that φ(α0) is nonzero.

We can then obtain an infinite linearly independent subset of Hn−2(M̃, B̃;Z/ℓZ) by conjugating α0.
To find α0, we construct an explicit equivariant diffeomorphism f and an explicit isotopy from f to
idM . As in the proof of part (i), the diffeomorphism f is a lift of a summand slide.

The obtruction map φ can be viewed as an invariant defined on the homology of the space of
unparametrized embeddings B ↪→M (see Remark 5.1). It would be interesting to adapt the map φ
to study the homology of embedding spaces in a broader context.

1.7. Generalizations of Theorem A. Theorem A is stated and proved in the smooth category.
By slightly modifying the proof, one can show that if M is a smooth manifold and G is a finite
group of diffeomorphisms satisfying the hypotheses of Theorem A, then the kernel of the map
π0(Homeo(M)G) → π0(Homeo(M)) is not finitely generated. One can also adapt the proof of
Theorem A to the case that M is noncompact or has nonempty boundary, as long as one still
assumes the submanifold B is compact and without boundary.
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1.8. Sharpness of Theorem A in dimension 3. In dimension n = 3, the assumptions of Theorem
A are fairly mild restrictions. The Prime Decomposition Theorem implies that M◦/G splits uniquely
as a connected sum of prime 3-manifolds, and the Poincaré conjecture implies that each summand
is not simply connected. Therefore, the first assumption reduces to the statement that M◦/G
has k prime factors. For the second assumption, we note that if Fix(g0) is nonempty, then any
component will be an embedded loop in M , and the assumption will be satisfied if any such loop
is a torsion element (e.g. zero) in H1(M ;Z). Under these assumptions, Theorem A is sharp in
dimension 3. Namely, by [Luc25, Cor D], there is an action of G = Z/2Z on M = S1 ×S2 satisfying
the assumptions of Theorem A with k = 2, and for this action, Ker(PG) is finite.

1.9. Question: Normal generation. In [Luc25, Thm C], we show that for a certain action of
G = Z/2Z on M = (S1 × S2)#k−1, the group Ker(PG) is the ΓG(M)-normal closure of a finite set
(the theorem is stated in the topological category, but can easily be adapted to the smooth category).
The proof is special to this case; it exploits the isomorphism Mod(S3, Ck) ∼= SymOut(Fk) described
in Section 1.4 and appeals to the action of SymOut(Fk) on a certain contractible simplicial complex
constructed by McCullough–Miller [MM96]. We therefore ask:

Question 1.3. Let M be a closed oriented smooth manifold of dimension n ≥ 3, and G a finite
group of orientation-preserving diffeomorphisms. Is Ker(PG) the ΓG(M)-normal closure of a finite
set?

1.10. Free actions. For non-free group actions, the fixed points of G provide a natural obstruction
to equivariant isotopy. In the case of free actions, it is less obvious how to obstruct equivariant
isotopy, and indeed, there are classes of free actions for which Ker(PG) is known to be trivial.

For instance, suppose M is a closed surface of genus g ≥ 1 and G acts freely. Then by studying
the action of diffeomorphisms on π1 and appealing to K(π, 1)-theory, one can show that Ker(PG)
is trivial (see e.g. [MW21, §9], which gives an argument following Birman–Hilden [BH73] and
Aramayona–Leininger–Souto [ALS09]). This argument easily adapts to the case that M is a closed
hyperbolic 3-manifold; the main technical ingredient is that homotopic diffeomorphisms are isotopic,
which was proved by Gabai–Meyerhoff–Thurston [GMT03].

Beyond these examples, it appears little is known about Ker(PG) in dimension n ≥ 3 when G
acts freely. A recent theorem of Raman [Ram25] uses Hodge theory to prove that Ker(PG) is trivial
if M is an irreducible hyperkähler manifold and G is a finite group of automorphisms acting freely.
This provides examples of free actions for which Ker(PG) is trivial in dimension 4n for n ≥ 1; the
simplest example comes from a free involution on a K3 surface (which has real dimension 4). Vogt
[Vog77] proved that Ker(PG) is trivial for certain free actions on Seifert fibered 3-manifolds, and
applied this result to the study of foliations of certain 5-manifolds.

1.11. Outline. In Section 2, we describe certain diffeomorphisms of manifolds that we call disk
slides and summand slides; these are the diffeomorphisms that we use to prove Theorem A. In
Section 3, we prove part (i) of Theorem A. Sections 4 through 7 are dedicated to the proof of
part (ii) of Theorem A. In Section 4, we give local and global models for the action of G on M ,

and construct a certain infinite cover M̃ whose homology is not finitely generated. In Section 5,

we construct the obstruction map valued in the homology of M̃ . In Section 6, we construct an
equivariant diffeomorphism which maps to a nontrivial homology class under the obstruction map.
In Section 7, we complete the proof of part (ii) of Theorem A by using the element in Section 6 to
build an infinite linearly independent subset of the image of the obstruction map. In Section 8, we
use Theorem A to prove Theorem D.

1.12. Acknowledgements. We thank Bena Tshishiku for introducing us to this problem, for
helpful comments on an earlier draft, and for many helpful conversations throughout this project.
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We also thank Tom Goodwillie for a helpful discussion about the obstruction map constructed in
Section 5.

2. Disk Slides and Summand Slides

In this section, we define certain “slide diffeomorphisms” which we will use to construct elements
of Ker(PG). We first define the notion of a “disk slide” in Section 2.1, and study their action on the
fundamental group in Section 2.2. We then use disk slides to define “summand slides” in Section
2.3.

2.1. Disk slides. Let M be a compact oriented smooth manifold of dimension n ≥ 3 (possibly with
boundary). An (ordered) multidisk in M is a tuple ∆ = (D1, . . . , Dd), where D1, . . . , Dd are disjoint
closed smooth n-disks in the interior Int(M). Given a multidisk ∆, we define Diff∂(M rel∆) to be
the group of diffeomorphisms of M which fix ∂M and ∆ pointwise, and we define Mod(M rel∆) :=
π0(Diff∂(M rel∆)). Observe that we have a natural forgetful map Mod(M rel∆) → Mod(M).

Definition 2.1. Given a smooth manifold M and a multidisk ∆ in M , we define the group

DS∆(M) := Ker (Mod(M rel∆) → Mod(M)) ,

and we define a disk slide to be any diffeomorphism of M that represents an element of DS∆.

Our goal in this subsection is to characterize disk slides in terms of the fundamental group of
a certain bundle. First, let Confd(M) denote the configuration space of d ordered points in the
interior of M , i.e.

Confd(M) := {(x1, . . . , xd) ∈ Int(M)d | xi ̸= xj for all 1 ≤ i ̸= j ≤ d}.

Then we define the multiframe bundle of degree d to be the principal GLn(R)d-bundle Frd(M) →
Confd(M) where the fiber over (x1, . . . , xn) is the set of tuples (ω1, . . . , ωn), where ωi is a basis of
the tangent space TxiM . In the case d = 1, Fr1(M) is simply the frame bundle Fr(M) → Int(M).
To construct Frd(M) formally, one can start with the direct product bundle (Fr(M))d on Md and
restrict it to the subspace Confd(M) ⊆Md. Alternatively, one can construct Frd(M) as the subspace
of Confd(Fr(M)) consisting of tuples of frames over distinct points.

Suppose now ∆ is a framed multidisk, meaning that ∆ = (D1, . . . , Dd) is a multidisk equipped
with a choice of frame ωi at the center of each disk Di. Then we let Fr∆(M) denote the frame
bundle Frd(M), equipped with the base point (ω1, . . . , ωd). The main result of this subsection is
then the following.

Proposition 2.2. Let ∆ be a framed multidisk in M . Then there is natural surjection

DS∆ : π1(Fr∆(M)) ↠ DS∆(M).

We prove Proposition 2.2 with two standard lemmas about embedding spaces of disks. Given a
multidisk ∆ = (D1, . . . , Dd), we let Emb(∆,M) denote the space of embeddings D1 ⊔ · · · ⊔Dd ↪→
Int(M). Then the following two lemmas follow from the work of Cerf [Cer61].

Lemma 2.3. The natural map Diff∂(M) → Emb(∆,M) is a locally trivial fibration, where Diff∂(M)
is the group of diffeomorphisms fixing ∂M pointwise.

Lemma 2.3 is given in [Cer61, §II.2.2.2].

Lemma 2.4. The natural map Emb(∆,M) → Fr∆(M) is a homotopy equivalence.

Lemma 2.4 is deduced in [Cer61, §II.5.1.5] in the case of single disk, but the proof can be adapted
to the case of a multidisk with minor modifications.

Now, we can prove Proposition 2.2.
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Proof of Proposition 2.2. By Lemma 2.3, we get an exact sequence

π1(Emb(∆,M)) → Mod(M rel∆) → Mod(M).

By exactness, the image of the first map is precisely DS∆(M). By Lemma 2.4, we have an
isomorphism π1(Fr∆(M)) → π1(Emb(∆,M)). Thus we define DS∆ as the composition

π1(Fr∆(M))
∼=−→ π1(Emb(∆,M)) ↠ DS∆(M).

□

2.2. Disk slides, sphere twists, and inner automorphisms. Next, given a framed multidisk
∆ = (D1, . . . , Dd) in M , we can study the behavior of disks slides in terms of π1(Fr∆(M)). Observe
first that since Fr∆(M) is a principal GLn(R)d-bundle, we have an exact sequence

π1(GLn(R)d) → π1(Fr∆(M)) → π1(Confd(M)) → π0(GLn(R)d).

Since M is orientable, the last map is in fact trivial. So, we can understand disk slides in terms of
π1(GLn(R)d) and π1(Confd(M)). We will summarize our findings as Proposition 2.6 below. For a
similar discussion in the case of 3-manifolds, see [HW10, Rem 2.4].

2.2.1. Sphere twists. First, recall that π1(GLn(R)) ∼= Z/2Z, and it is generated by a 2π-rotation in
the xy-plane. Then π1(GLn(R)d) ∼= (Z/2Z)d; let e1, . . . , ed be the images of standard generators in
π1(Fr∆(M)). If we let pi denote the center of Di, then ei is a 2π-rotation of our chosen frame at pi.
It follows that DS∆(ei) is the isotopy class of sphere twist about ∂Di. This is a diffeomorphism of
M supported on a collar neighborhood ∂Di× [0, 1] ⊆M − Int(Di) which acts on the slice ∂Di×{t}
by a 2πt-rotation. In particular, DS∆(ei) acts trivially on π1(M,pi). We emphasize that a sphere
twist may be isotopically trivial, i.e. the composition (Z/2Z)d → π1(Fr∆(M)) → DS∆(M) need not
be injective (in particular, if ei is in the image of the composition

π1(Diff∂(M)) → π1(Emb(∆,M))
∼=−→ π1(Fr∆(M)),

then DS∆(ei) will be trivial).

2.2.2. Inner automorphisms. Next, we can study disk slides in terms of π1(Confd(M)). We let pi
denote the center of Di, and fix (p1, . . . , pd) as a base point of Confd(M). First, we can compute
π1(Confd(M)).

Lemma 2.5. The natural map

π1(Confd(M)) →
d∏
i=1

π1(M,pi)

is an isomorphism.

Proof. Fix local coordinates x1, . . . , xn on Int(M). Then Int(M)d has local coordinates of the form

x11, . . . , x
n
1 , . . . , x

1
d, . . . , x

n
d ,

and Confd(M) is given locally as the complement of the linear subspaces

Vi,j = {(x11, . . . , xn1 , . . . , x1d, . . . , xnd ) ∈ Rnd | xki = xkj for all 1 ≤ k ≤ n}

for 1 ≤ i ̸= j ≤ d. Since the equation xki = xkj defines a codimension 1 subspace, it follows that Vi,j
has codimension n.

Thus, since n ≥ 3, the space Confd(M) is obtained from Int(M)d by removing a trans-
verse intersection of closed submanifolds of codimension at least 3, which means that the map
π1(Confd(M)) → π1(M

d) induces an isomorphism on π1. □
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By Lemma 2.5, we have a natural map

ρ : π1(Fr∆(M)) →
d∏
i=1

π1(M,pi).

We saw above that DS∆ sends elements in Ker(ρ) to sphere twists, which act trivially on π1(M).
Thus, we will use the map ρ to study the action of disk slides on π1(M).

Observe that for each j ∈ {1, . . . , d}, any element of Mod(M rel∆) fixes the point pj ∈ Dj , and
hence Mod(M rel∆) acts on π1(M,pj). If α ∈ DS∆(M) is represented by a disk slide f , then since
f is isotopic to idM , α must induce an inner automorphism on π1(M,pj). Indeed, if we choose an
isotopy ht with h0 = id and h1 = f , then f will conjugate π1(M,pj) by the path of pj under ht.

Now, consider the composition

π1(Fr∆(M))
DS∆−−−→ Mod(M rel∆) → Aut(π1(M,pj)).

It follows from the construction of DS∆ and the discussion above that for γ ∈ π1(Fr∆(M)), the
image of γ in Aut(π1(M,pj)) is the inner automorphism Inn(γ), where γ is the image of γ in
π1(M,pj). Indeed, γ determines a loop in Emb(∆,M), which we can extend to an ambient isotopy
ht with h0 = idM . Then DS∆(γ) is represented by h1. By the discussion above, DS∆(γ) conjugates
π1(M,pj) by the path traveled by pj under ht, which is precisely the loop γ.

2.2.3. Conclusion. All together, we can summarize the discussion in this subsection as the following
proposition.

Proposition 2.6. Let ∆ = (D1, . . . , Dd) be a framed multidisk in M , and let pi be the center of the
disk Di. Then there is an exact sequence

(Z/2Z)d → π1(Fr∆(M)) →
d∏
i=1

π1(M,pi) → 1.

Moreover:

(i) If ei is the image of the ith generator under the map (Z/2Z)d → π1(Fr∆(M)), then DS∆(ei)
is the isotopy class of a sphere twist about ∂Di.

(ii) For each j ∈ {1, . . . , d}, the composite map

π1(Fr∆(M))
DS∆−−−→ Mod(M rel∆) → Aut(π1(M,pj))

is equal to the composition

π1(Fr∆(M)) →
d∏
i=1

π1(M,pi) → π1(M,pj) → Inn(π1(M,pj)).

2.3. Summand slides. Next, we will use disk slides to define summand slides, which are the
diffeomorphisms we will use to prove Theorem A. The main result of this subsection is Proposition
2.8 below, which computes the action of a summand slide on π1.

First, we introduce the notion of gluing manifolds along multidisks (following [KM63]). SupposeM1

and M2 are two oriented smooth n-manifolds, and ∆i = (Di,1, . . . , Di,d) is a multidisk in the interior
of Mi. Let pi,j denote the center of the disk Di,j . We choose parametrizations ki,j : D

n → Di,j ,
where Dn is the standard closed n-disk in Rn. We require each k1,j to be orientation-preserving and
k2,j to be orientation-reversing. Define

M∗
i :=Mi \ {pi,1, . . . , pi,d}.

To glue M1 and M2 along ∆1 and ∆2, we start with the disjoint union M∗
1 ⊔M∗

2 . Then, using our
parametrizations ki,j , we identify Int(D1,j) \ {p1,j} with Int(D2,j) \ {p2,j} via the diffeomorphism of
Int(Dn) \ {0} defined by tu 7→ (1− t)u for each unit vector u ∈ Sn−1 and t ∈ (0, 1). The resulting
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manifold M is well-defined independent of the choice of ki,j , but if M1 and M2 are both oriented,
then M may depend on the choice of orientation of M1 and M2 (see [Pal60]). We will frequently
identify M∗

i with its image in M .
With this convention set, we can define summand slides.

Definition 2.7. Suppose M is obtained by gluing two manifolds M1 and M2 along multidisks ∆1

and ∆2. A summand slide is a diffeomorphism of M which acts on M∗
1 by the restriction of a disk

slide, and which acts on M∗
2 by idM∗

2
.

Note that any summand slide is well-defined since a disk slide on M1 fixes the multidisk ∆1

pointwise.
An important special case is that d = 1, so M a connnected sum M1#M2. In this case, we can

easily compute the action of a summand slide on π1(M). Namely, suppose M1 and M2 are glued
along disks D1 ⊆M1 and D2 ⊆M2. Let pi be the center of Di. Fix points qi ∈ Di away from the
center so that each qi corresponds to the same point q ∈M . By choosing arcs in each Di from pi to
qi, we get a natural free product decomposition

π1(M, q) ∼= π1(M1, p1) ∗ π1(M2, p2).

Since any summand slide fixes D1 and D2 pointwise, it will induce well-defined automorphisms of
π1(M, q) and π1(Mi, pi) (in particular, it will act trivially on π1(M2, p2)). Then we get the following.

Proposition 2.8. Suppose M =M1#M2 as above. Choose γ ∈ π1(Fr(M1)) and let γ ∈ π1(M1) be
its image. Suppose f is a summand slide of M where the action on M∗

1 represents DSD1(γ). Then,
with respect to the identification

π1(M, q) ∼= π1(M1, p1) ∗ π1(M2, p2),

the diffeomorphism f acts on π1(M) by conjugating π1(M1) by γ and fixing π1(M2) pointwise.

Proof. This follows directly from the definition of f and Proposition 2.6 above. □

3. Proof of Part (i) of Theorem A

In this section, we prove part (i) of Theorem A. The proof is a relatively straightforward application
of Propositions 2.6 and 2.8, and is essentially a warmup to part (ii) of Theorem A.

In Section 3.1, we establish some notation and a model of the group action that we will use
throughout this section. In Sections 3.2 and 3.3, we describe how disk slides lift along the quotient
map M →M/G. In Section 3.4, we reinterpret the assumption on the homology class of B in terms
of π1(M \B). In Section 3.5 we construct the candidate subgroup of Ker(PG), and we complete the
proof in Section 3.6.

3.1. Preliminaries. We begin by establishing some notation. Let M and G be a manifold and
group respectively which satisfy the hypotheses of Theorem A with k = 3. Let R ⊆M denote the
set of points whose G-stabilizer is nontrivial. Then R is a deformation retract of a G-invariant open
submanifold U ⊆M . Indeed, by [Ill00], we can choose an equivariant triangulation of M with R as
a G-invariant subcomplex, and then take U to be the interior of a regular neighborhood of R. Let
X =M \ U , so X is a manifold with boundary on which G acts freely. Let Y = X/G. Note that
if we let M◦ ⊆ M denote the set of points whose G-stabilizer is trivial, then X is a deformation
retract of M◦ and Y is a deformation retract of M◦/G.

Next, we fix connected sum decompositions of X and Y as follows. By assumption, we have a
connected sum decomposition M◦/G ∼= Q0#Q1#Q2 where π1(Qi) is nontrivial for each i. It follows
that there is a connected sum decomposition Y ∼= Y1#Y2 where π1(Y1) ∼= π1(Q0) ∗ π1(Q1) and
π1(Y2) ∼= π1(Q2). Following the convention of Section 2.3, we choose n-disks D1 ⊆ Y1 and D2 ⊆ Y2
and view Y as obtained by gluing Y1 and Y2 along these disks. We let Y ∗

i (resp. D∗
i ) denote Yi

(resp. Di) minus the center of Di, and we identify Y ∗
i with its image in Y . Let X∗

i ⊆ X denote the



ISOTOPY VERSUS EQUIVARIANT ISOTOPY IN DIMENSIONS THREE AND HIGHER 11

preimage of Y ∗
i , and let ∆∗

i denote the preimage of D∗
i . Then let Xi and ∆i be obtained by filling

in the punctures. Thus we can view X as obtained by gluing together X1 and X2 along ∆1 and
∆2 (note that each Xi may be disconnected). Note that we have regular (unbranched) G-coverings
Xi → Yi and X

∗
i → Y ∗

i .
Recall that by assumption, M has a distinguished codimension 2 compact orientable submanifold

B which is fixed by an element g0 ∈ G. The submanifold B is contained in R. Let UB be the
component of U containing B. Then ∂UB is a boundary component of X; we assume without loss of
generality that this boundary component lies on X∗

1 . In particular, X1 and Y1 both have nonempty
boundary.

Observe that the inclusion X ↪→M induces a way to fill in each boundary component of X1 and
X2. We call the resulting filled manifolds M1 and M2 respectively, so M is obtained by gluing M1

and M2 along the multidisks ∆1 and ∆2. See Figure 1 for an illustration.

Figure 1. A schematic illustration of the manifolds X and Y . The trefoils and
unknots (in magenta) represent the set R and its image in M/G; the manifolds X
and Y are the complement of a tubular neighborhood of these curves.

Finally, we establish some notation for the various mapping class groups that arise throughout
this section. Given an oriented manifold W , we let Diff∂(W ) denote the group of orientation-
preserving diffeomorphisms fixing ∂W pointwise, and let Mod(W ) = π0(Diff∂(W )). Similarly,
given a closed submanifold Z ⊆W , we let Diff∂(W relZ) denote the subgroup of diffeomorphisms
fixing Z pointwise, and let Mod(W relZ) = π0(Diff∂(W relZ)). Suppose W ′ →W is a finite cover.
Then we let LDiff∂(W ) ≤ Diff∂(W ) and LDiff∂(W relZ) ≤ Diff∂(W relZ) denote the finite index
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subgroups of diffeomorphisms that lift to a diffeomorphism of W ′ that fixes ∂W ′ pointwise, and
define LMod(W ) = π0(LDiff∂(W )) and LMod(W relZ) = π0(Diff∂(W relZ)).

3.2. Lifting disk slides. Our next goal is to describe lifts of summand slides of Y on the level of
frame bundles. It will be enough to describe lifts of disk slides on Y1.

Fix an arbitrary framing on D1. Since the covering map X1 → Y1 is a local diffeomorphism, this
induces framings on ∆1. Recall from Proposition 2.6 that we have an exact sequence

Z/2Z → π1(FrD1(Y1)) → π1(Y1) → 1.

Here FrD1(Y1) is simply the frame bundle Fr(Y1) with a base point at our chosen frame at the center
of D1. Let π1(Y1)

lift ≤ π1(Y1) be the subgroup of loops that lift to loops in X1 (equivalently, π1(Y1)
lift

is the image of the fundamental group of any component of X1). Let π1(FrD1(Y1))
lift ≤ π1(FrD1(Y1))

be the preimage of π1(Y1)
lift.

Now, observe that there’s a natural map Fr∆1(X1) → FrD1(Y1) which maps a tuple (ω1, . . . , ωd)
to the image of ω1 in Y1. Then we get the following.

Lemma 3.1. The map π1(Fr∆1(X1)) → π1(FrD1(Y1)) above admits a section

π1(FrD1(Y1))
lift → π1(Fr∆1(X1))

which fits into the following commutative square:

π1(FrD1(Y1))
lift π1(Fr∆1(X1))

LMod(Y1 relD1) Mod(X1 rel∆1)

DSD1
DS∆1

Here, the dashed arrow is defined on a finite index subgroup containing the image of π1(FrD1(Y1))
lift,

and sends a diffeomorphism to its unique lift that fixes ∂X1.

Before proving the lemma, we will have to introduce unordered embedding spaces and multiframe
bundles.

Let d = |G|, so X1 → Y1 is a degree d cover. Note that since ∆1 is simply the preimage of D1 in

X1, we can identify Emb(∆1, X1) with the space of embeddings
⊔d
i=1D1 ↪→ Int(X1). In particular,

Emb(∆1, X1) admits a natural action of the symmetric group Sd by precomposition; we define the
quotient

UEmb(∆1, X1) := Emb(∆1, X1)/Sd,

so UEmb(∆1, X1) is the space of unordered emebddings.
Similarly, we have a natural action of Sd on Confd(X1); we let UConfd(X1) denote the quotient

by this action, so UConfd(X1) is the configuration space of d unordered points in Int(X1). Then
the multiframe bundle Fr∆1(X1) descends to a bundle

UFr∆1(X1) → UConfd(X1),

where the fiber over an unordered set of points {x1, . . . , xd} is an unordered set {ω1, . . . , ωd} where
ωi is a basis for TxiX1.

Note that we have the following commutative diagram with exact rows:

(3.1)

1 π1(Emb(∆1, X1)) π1(UEmb(∆1, X1)) Sd 1

1 π1(Fr∆1(X1)) π1(UFr∆1(X1)) Sd 1

By the 5 Lemma, we conclude that π1(UEmb(∆1, X1)) ∼= π1(UFr∆1(X1)).
Now, we can prove the lemma.
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Proof of Lemma 3.1. Observe that by lifting an embedding D1 ↪→ Y1, we get a natural map

Emb(D1, Y1) → UEmb(∆1, X1).

This map fits into the following commutative diagram:

LDiff∂(Y1 relD1) LDiff∂(Y1) Emb(D1, Y1)

Diff∂(X1 relSd
∆1) Diff∂(X1) UEmb(∆1, X1)

Here, the middle vertical map sends a liftable diffeomorphism to the unique lift that fixes ∂X1 (recall
that X1 and Y1 both have a boundary component coming from B). The group Diff∂(X1 relSd

∆1) is
the group of diffeomorphisms of X1 fixing ∂X1 pointwise and fixing the natural embedding ∆1 ↪→ X1

up to precomposition by an element of Sd, and the left vertical map is the restriction of the middle
vertical map. By Lemma 2.3 (replacing M with X1 and Y1 respectively), each row in this diagram
is a fibration.

Now, observe that by mapping a frame in Y1 to the set of frames above it in X1, we have a
natural map

FrD1(Y1) → UFr∆1(X1).

Combining this map with the diagram (3.1) and the long exact sequences of the fibrations above,
we get the following commutative diagram:

π1(FrD1(Y1)) π1(UFr∆1(X1))

π1(Emb(D1, Y1)) π1(UEmb(∆1, Y1))

LMod(Y1 rel∆1) Mod(X1 relSd
∆1)

∼= ∼=

Here Mod(X1 relSd
∆1) = π0(Diff∂(X1 relSd

∆1)).
Now, we can use the above diagram to deduce the desired commutative square. Following

the proof of Proposition 2.2, we see that the composition of the left vertical maps is precisely
DSD1 . Next, recall from (3.1) that π1(Fr∆1(X1)) is naturally a subgroup of π1(UFr∆1(X1)) (and
the analogous statement holds for Emb and UEmb). Composing the right vertical maps in the
above diagram yields a map π1(UFr∆1(X1)) → Mod(X1 relSd

∆), and the restriction to the subgroup
π1(Fr∆(X1)) is precisely the map DS∆1 . Finally, it follows by the definition of π1(FrD1(Y1))

lift that
the image of π1(FrD1(Y1))

lift under the map π1(FrD1(Y1)) → π1(UFr∆1(X1)) lands in the subgroup
π1(Fr∆1(X1)). This yields the desired commutative square, where the dashed arrow is defined
on the preimage of the finite index subgroup Mod(X1 rel∆1) ≤ Mod(X1 relSd

∆1). The fact that
π1(FrD1(Y1))

lift → π1(Fr∆1(X1)) is a section follows by construction.
□

3.3. Lifting and including. Now, we have the following commutative diagram:

(3.2)

π1(Fr∆1(Y1))
lift π1(Fr∆1(X1)) π1(Fr∆1(M1))

LMod(Y1 relD1) Mod(X1 rel∆1) Mod(M1 rel∆1)

LMod(Y ) Mod(X) Mod(M)

DSD1
DS∆1

DS∆1
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The top-left square comes directly from Lemma 3.1. The top right square is induced by the inclusion
X1 ↪→M1. In the bottom right square, the horizontal maps are induced by the inclusions X1 ↪→M1

and X ↪→M , and the vertical maps are induced by the inclusions X∗
1 ↪→ X and M∗

1 ↪→M . In the
bottom left square, the bottom horizontal map is induced by sending a diffeomorphism to its unique
lift that fixes ∂X, and the vertical maps are again induced by inclusions.

3.4. A meridian of the fixed set. Next, we will identify a loop in M that we will use to construct
the summand slides needed to prove part (i) of Theorem A. This loop will be a meridian of B, i.e.
the boundary of a fiber of a tubular neighborhood of B.

Lemma 3.2. The submanifold B has a meridian µ which lies in X and represents a nontrivial
element of π1(X).

To prove Lemma 3.2, we appeal to the following general fact about meridians of codimension 2
submanifolds.

Lemma 3.3. Let W be a closed oriented smooth manifold of dimension n ≥ 3, and let Z ⊆W be a
compact oriented codimension 2 submanifold without boundary. Let µ be a meridian of Z. Then for
any prime p, the meridian µ represents a nontrivial element of H1(W \ Z;Z/pZ) if and only if the
homology class [Z] ∈ Hn−2(W ;Z/pZ) is trivial.

Proof. Let ν(Z) denote the normal bundle of Z, so ν(Z) is a D2-bundle over Z. By excision, we
have an isomorphism

H2(W,W \ Z;Z/pZ) ∼= H2(ν(Z), ∂ν(Z);Z/pZ).

By the Thom isomorphism and Poincaré duality, we have an isomorphism H2(ν(Z), ∂ν(Z);Z/pZ) ∼=
Z/pZ, and a homology class inH2(ν(Z), ∂ν(Z);Z/pZ) is determined by its Z/pZ-intersection number
with Z. This implies in particular that H2(ν(Z), ∂ν(Z);Z/pZ) is generated by a fiber of ν(Z).

Now, from the long exact sequence of the pair (W,W \ Z), we have an exact sequence

H2(W ;Z/pZ) → H2(ν(Z), ∂ν(Z);Z/pZ) → H1(W \ Z;Z/pZ).

The second map sends a fiber of ν(Z) to its boundary, i.e. to the homology class of µ. The first
map sends a homology class of W to its Z/pZ-intersection number with Z. Thus, the homology
class [Z] ∈ H2(W ;Z/pZ) is trivial if and only if the first map is trivial, which occurs if and
only if the second map is injective, which occurs if and only if the meridian µ is nontrivial in
H1(W \ Z;Z/pZ). □

Now, we can prove Lemma 3.2.

Proof of Lemma 3.2. Fix b ∈ B, and let Gb denote the G-stabilizer of b. We may assume that G
acts by isometries with respect to some Riemannian metric on M . Then the exponential map
TbM →M is a Gb-equivariant diffeomorphism near the origin. Since G acts by orientation-preserving
diffeomorphisms, we know that Gb does not fix any codimension 1 subspace of TbM . Thus near b,
the preimage of M◦ in TbM is the complement of a finite union of subspaces of codimension at least
2. It follows that we can find a meridian µ of B contained in M◦, and up to homotopy, we may
assume µ lies in X. Then by Lemma 3.3 (applied to some prime p dividing ℓ), the class of µ in
π1(X) maps to a nontrivial element under the composition

π1(X) → π1(M \B) → H1(M \B;Z) → H1(M \B;Z/ℓZ),

and is therefore nontrivial. □
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3.5. Constructing the subgroup. Our next goal is to construct a subgroup Λ ≤ π1(Fr∆1(Y1))
lift

which maps onto a virtual free product in LMod(Y ), and which maps to a finite subgroup in
Mod(M). From here, we will be able to deduce part (i) of Theorem A.

We construct the subgroup Λ as follows. Let µ be a the meridian of B from Lemma 3.2. Since B lies
inM1, we may assume without loss of generality that µ is contained in X1 and represents a nontrivial
conjugacy class in π1(X1). Let γ ∈ π1(X1) be an element in this conjugacy class. Let δ ∈ π1(Y1)
be the image of γ; by construction, δ lies in the subgroup π1(Y1)

lift. Let δ ∈ π1(FrD1(Y1))
lift be an

element in the preimage of δ. Recall that we have a free splitting

π1(Y1) ∼= π1(Q0) ∗ π1(Q1).

Without loss of generality, we may assume δ lies in the subgroup π1(Q0). Let δ
′
be a conjugate of δ

by a nontrivial element of π1(Q1), and let δ′ ≤ π1(FrD1(Y1))
lift be an element in the preimage of

δ
′
. We define Λ ≤ π1(FrD1(Y1))

lift to be the subgroup generated by δ and δ′. See Figure 2 for an
illustration of the curves γ and δ.

Figure 2. The curves γ and δ. The 3-disk on the right represents D1, and the
3-disks on the left represent a subset of ∆1.

Now, we can prove that Λ has the desired properties using the commutative diagram (3.2).

Lemma 3.4. Let Λ′ ≤ LMod(Y ) be the image of Λ, and let Λ′′ ≤ Out(π1(Y )) be the image of Λ′.
Then Λ′′ is a nontrivial free product of cyclic groups, and the surjection Λ′ → Λ′′ has a finite kernel.

Proof. Let αδ and αδ′ denote the images of δ and δ′ in LMod(Y ), so Λ′ is generated by αδ and αδ′ ,
and Λ′′ is generated by the images of αδ and αδ′ in Out(π1(Y )).

First, we can identify the group Λ′′ more explicitly. Let Inn(δ) and Inn(δ
′
) denote the inner

automorphisms of π1(Y1) determined by δ and δ
′
. We have a nontrivial free splitting

π1(Y ) ∼= π1(Y1) ∗ π1(Y2).
Each element of Inn(π1(Y1)) extends to an automorphism of π1(Y ) which acts trivially on π1(Y2),
and these automorphisms are never inner (except for the identity), so we get an embedding
Inn(π1(Y1)) ↪→ Out(π1(Y )). Now, αδ and αδ′ are summand slides, and they act on Y1 by DSD1(δ)

and DSD1(δ
′
) respectively. Thus by Proposition 2.8, we see that Λ′′ is the image of ⟨Inn(δ), Inn(δ′)⟩

under the emebdding Inn(π1(Y1)) ↪→ Out(π1(Y )).
Now, we can complete the proof. Since π1(Y1) is a free product, it has trivial center, and hence

the map π1(Y1) → Inn(π1(Y1)) is an isomorphism. We therefore know that Λ′′ is a free product

since δ and δ
′
generate a free product in π1(Y1). It remains just to check that the map Λ′ → Λ′′

has a finite kernel. But this follows because the map Λ → Λ′′ has a finite kernel by Proposition 2.6
(applied to M = Y1 and ∆ = D1). □
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Lemma 3.5. The group Λ maps onto a finite subgroup in Mod(M).

Proof. From the diagram (3.2), it’s enough to show that Λ maps to a finite subgroup of π1(Fr∆1(M1)).

Let δ̃ and δ̃′ be the images of δ and δ′ in π1(Fr∆1(X1)). Let d = |G|. By Proposition 2.6, we have
an exact sequence

(Z/2Z)d → π1(Fr∆1(X1)) → π1(X1)
d → 1

(note that in the product π1(X1)
d, each factor has a different basepoint, which we omit for simplicity).

By construction of the map π1(FrD1(Y1))
lift → π1(Fr∆1(X1)), the image of δ̃ in π1(X1)

d is a d-tuple
comprised of the G-orbit of γ, and in particular it is the G-orbit of a loop in the free homotopy

class of µ. Similarly, since δ
′
is a conjugate of δ, the image of δ̃′ in π1(X1)

d is a d-tuple comprised
of the G-orbit of a loop in the free homotopy class of µ.

Proposition 2.6 also gives us an exact sequence

(Z/2Z)d → π1(Fr∆1(M1)) → π1(M1)
d → 1.

Since µ is homotopically trivial in M1, it follows from the discussion above that under the

map π1(Fr∆1(X1)) → π1(Fr∆1(M1)), the elements δ̃ and δ̃′ are sent to the kernel of the map
π1(Fr∆1(M1)) → π1(M1)

d, and hence lie in the image of (Z/2Z)d in π1(Fr∆1(M1)). □

3.6. Completing the proof. Finally, we can complete the proof of part (i) of Theorem A as
follows.

By Lemmas 3.4 and 3.5, the subgroup Λ ≤ π1(FrD1(Y1))
lift maps to a subgroup Λ′ ≤ LMod(Y )

which is a finite extension of a free product, and Λ maps to a finite group in Mod(M). Then Λ′ has
a finite index subgroup Ω which maps to the identity in Mod(M).

We have a lifting map LDiff∂(Y ) → Diff∂(X) that maps a diffeomorphism to the unique lift
fixing ∂X (which is nonempty). The image of this map is contained in the normalizer of G in
Diff∂(X), which contains the centralizer Diff∂(X)G as a finite index subgroup. Let LDiffG∂ (Y )

denote the preimage of Diff∂(X)G. Then π0(LDiffG∂ (Y )) has finite index in LMod(Y ). Thus, up
to passing to a further finite index subgroup of Ω, we may assume that each diffeomorphism of
Y representing an element of Ω lifts to an equivariant diffeomorphism of X. This implies that Ω

embeds into π0(Diff∂(X)G); indeed, if f represents an element of Ω and f̃ is its equivariant lift,

then any equivariant isotopy f̃ ≃ idX will descend to an isotopy f ≃ idY .
We have a natural inclusion Diff∂(X) ↪→ Diff(M) by extending a diffeomorphism by the identity,

and this restricts to an inclusion Diff∂(X)G ↪→ Diff(M)G. We claim that the composition

Ω ↪→ π0(Diff∂(X)G) → π0(Diff(M)G)

has a finite kernel. To see this, suppose f ∈ Diff∂(Y ) represents an element of Ω and f̃ ∈ Diff∂(X)G

is its lift. Let f̃ ′ ∈ Diff(M)G be the natural extension of f̃ (so f̃ ′ represents the image of [f ] in

π0(Diff(M)G)). Then f̃ ′ restricts to a diffeomorphism of M◦, and thus descends to a diffeomorphism
f ′ of M◦/G which extends f (recall that Y is a deformation retract of M◦/G). Suppose now that f
represents an element in the kernel of the map Ω → π0(Diff(M)G), meaning there is an equivariant

isotopy f̃ ′ ≃ idM . This isotopy must preserve the set R ⊆M of points with nontrivial G-stabilizers,
and thus this isotopy restricts to M◦ and descends to an isotopy f ′ ≃ idM◦/G. Since f ′ is an
extension of f and Y is a deformation retract of M◦/G, this implies that f is homotopic to idY .
Then f must represent an element of the kernel of Ω → Out(π1(Y )), which we know is finite by
Lemma 3.4.

Thus Ω virtually embeds into the kernel of the natural map

PG : π0(Diff(M)G) → π0(Diff(M)),

which completes the proof.
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4. A Model of the Action, and an Infinite Cover

We now begin towards the proof of part (ii) of Theorem A. Fix a manifold M and a group G
satisfying the assumptions of Theorem A with k = 3. By assumption, we have a codimension 2
submanifold B ⊆M which is fixed by some element of G and which represents a trivial homology
class in Hn−2(M ;Z/ℓZ) for some ℓ > 1. In this section, we construct local and global models of the

action of G on M , and use them to construct an infinite sheeted cover π : M̃ →M that we will use
in the proof of Theorem A.

In Section 4.1, we describe the local action of G near a generic point of B. In Section 4.2, we
construct a global model of the action by decomposing M according to the connected summands of
M◦/G. In Sections 4.3 and 4.4, we describe π1(M) in terms of this global model. In Section 4.5,

we construct the cover M̃ using this description of π1(M), and in Section 4.6, we show that the

homology of M̃ is infinite dimensional.

4.1. A local model of the action. We begin by describing the local behavior of the action of G
near a generic point of B.

Lemma 4.1. There exists a point b0 ∈ B whose stabilizer G0 := StabG(b0) is cyclic and fixes
B pointwise. Moreover, each point b in the G-orbit of b0 has a closed neighborhood Zb which is
invariant under the stabilizer Gb := StabG(b) and satisfies the following properties:

(i) There is a diffeomorphism Zb ∼= Dn−2 ×D2 under which Gb fixes the Dn−2-factor pointwise
and acts on the D2-factor by a 2π

m -rotation, where m = |Gb|.
(ii) For any two distinct points b and b′ in the G-orbit of b0, the neighborhoods Zb and Zb′ are

disjoint.
(iii) For any g ∈ G, g(Zb) = Zg(b).

Note that Lemma 4.1 requires the hypothesis that G acts by orientation-preserving diffeomor-
phisms. Indeed, the lemma fails if we let M = S3, let G = Z2 × Z2 where the two generators act by
reflections in the xy- and xz-planes (viewing S3 as R3 ∪ {∞}), and let B be the x-axis, which is the
fixed set of the element g0 = (1, 1).

Proof of Lemma 4.1. Given any x ∈M , we let Gx denote its stabilizer StabG(x). Assume G fixes
some Riemannian metric on M . Then for any x ∈M , the stabilizer Gx acts on the tangent space
TxM as a finite subgroup of SO(n). Moreover, the exponential map TxM →M is a Gx-equivariant
local diffeomorphism at 0 ∈ TxM . The submanifold B is a closed totally geodesic submanifold of
M , since it is a component of Fix(g0) (see [Kob72, Thm 5.1]).

Let H ≤ G be the subgroup of elements that fix B pointwise. Let T be an H-invariant closed
tubular neighborhood of B (see [Bre72, Thm VI.2.2] for the existence of such a neighborhood).
Since B has codimension 2, each point x ∈ B has a closed neighborhood Z with a diffeomorphism
Z ∼= Dn−2 ×D2 taking Z ∩B to Dn−2 × {0}, and taking each fiber of T to a fiber {y} ×D2.

For x ∈ B, the action of H on TxM fixes a codimension 2 subspaceW ⊆ TxM , and the exponential
map yields an isomorphism between the action of H on the D2-fibers of T and the linear action
of H on a small 2-disk D ⊆W⊥. Note that H must act faithfully on TxM ; indeed, if h ∈ H fixes
TxM pointwise, then the fixed set Fix(h) ⊆M must be a closed submanifold of codimension 0, and
thus Fix(h) =M . Since H acts trivially on W , it must be that H acts faithfully on W⊥. Since G is
orientation-preserving, we know that no element of H can act on W⊥ by a reflection, and thus H
acts on W⊥ by a finite subgroup of SO(2). Thus H must be cyclic and act on the D2-factor of Z
by rotations.

Now, we claim that there exists a point b0 ∈ B whose stabilizer G0 := Gb0 is equal to H. Assuming
this claim, we can prove the lemma. Indeed, let Zb0 be the neighborhood Z described above, and for
b = gb0, we define Zb := g(Zb0). This is well-defined since Zb0 is G0-invariant. Then the fact that
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G0 is cyclic and statement (i) follow from the discussion above, statement (ii) follows by choosing
Zb0 sufficiently small, and statement (iii) is automatic.

Thus, it remains to show that there exists a point b0 ∈ B such that Gb0 = H. Choose any x ∈ B.
Observe that H ≤ Gx automatically, so suppose that there exists g ∈ Gx \H. Let W ⊆ TxM be the
codimension 2 subspace spanned by exp−1(V ), where V ⊆ B is a small neighborhood of x. Note
that g cannot fix W pointwise; otherwise g would fix an open subset of B pointwise, which would
imply that g fixes B pointwise (as B is totally geodesic and g is an isometry), contradicting that
g ̸∈ H. Thus if we let Q ⊆ TxM denote the fixed set of g, the intersection W ∩ Q has positive
codimension in W . Thus, there is an open subset U ⊆ B such that g ̸∈ Gy for any y ∈ U . We
can repeat the argument inductively; choosing y ∈ U , if there exists g′ ∈ Gy \H, we can pass to a
smaller neighborhood where g′ does not stabilize any point. Since G is finite, we must eventually
find a point b0 ∈ B such that Gb0 \H is empty. □

4.2. A global model of the action. Next, we can describe how G acts on the connected summands
of M . This model will be slightly different from the one in Section 3.1. Recall that we let M◦ denote
the set of points whose G-stabilizer is trivial. Let N =M◦/G. By assumption, N ∼= Q0#Q1#Q2

where π1(Qi) is nontrivial for each i.
We begin by constructing a model of N . Let D+

1 and D+
2 be embedded n-disks in Q0. Similarly,

for i ∈ {1, 2}, let D−
i be an embedded n-disk in Qi. Then, we view N as the manifold obtained by

gluing each D+
i to D−

i (see Section 2.3 for our gluing conventions). We let Q∗
0 denote Q0 minus the

centers of each D+
i , and for i ∈ {1, 2} we let Q∗

i denote Qi minus the center of D−
i . For i ∈ {0, 1, 2}

we identify Q∗
i with its image in N . We let (D+

i )
∗ = D+

i ∩Q∗
0 and (D−

i )
∗ = D−

i ∩Q∗
i .

Next, we can construct a model of M . For each i ∈ {0, 1, 2}, we let (P ◦
i )

∗ ⊆ M◦ denote the
preimage of Q∗

i in M◦, and we let P ◦
i be the (possibly disconnected) manifold obtained by filling in

the punctures. Similarly, we let (∆+
i )

∗ ⊆ (P ◦
0 )

∗ denote the preimage of (D+
i )

∗ and let (∆−
i )

∗ ⊆ (P ◦
i )

∗

denote the preimage of (D−
i )

∗, and we let ∆+
i ⊆ P ◦

0 and ∆−
i ⊆ P ◦

i denote the multidisks obtained
by filling in the punctures. Then we can view M◦ as the manifold obtained by gluing P ◦

0 to P ◦
i

along the multidisks ∆±
i for each i ∈ {1, 2}. Finally, the inclusion M◦ ↪→M induces a way to fill in

the ends of P ◦
i (resp. (P ◦

i )
∗) to obtain a (possibly disconnected) manifold Pi (resp. P

∗
i ), so M is

obtained by gluing P0 to Pi for i ∈ {1, 2} along the multidisks ∆±
i . Note that the action of G on M

induces an action of G on each Pi.
Note that for each i ∈ {1, 2}, the group G acts freely and transitively on the components of ∆+

i

and ∆−
i . We can therefore label the components of ∆±

i by the elements of G, i.e. ∆±
i = (D±

i,g)g∈G.

We choose these labels so that gD±
i,h = D±

i,gh, and so that the disk D+
i,g is glued to D−

i,g. We call the

disks D±
i,g the gluing disks of M . We define Σi,g := ∂D+

i,g, so Σi,g is an (n− 2)-sphere in P0.
Fix a component M0 of P0, and let M∗

0 ⊆ M denote the corresponding component of P ∗
0 . We

assume without loss of generality that B lies on M0, and that M0 contains the gluing disks D+
i,id for

i ∈ {1, 2}. We fix a basepoint b0 ∈ B as in Lemma 4.1, and let G0 ≤ G denote the stabilizer of b0.
See Figure 3 for a schematic illustration of M .

4.3. The fundamental group. Our next goal is to describe the fundamental group of M in terms
of the pieces Pi. It will be convenient to describe π1(M, b0) in terms of a graph of groups; we
will refer to [Ser80, §I.5] and [Hig76] for background material on graphs of groups. We adapt the
convention that a graph G consists of

• a vertex set V (G), and
• an edge set E(G) ⊆ V (G)× V (G) such that for each edge e = (v1, v2) ∈ E(G), the set E(G)
contains the unique reverse edge e = (v2, v1).
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Figure 3. A schematic illustration of M and N . Here the trefoils and unknots (in
magenta) represent the points with nontrivial stabilizers and their images in M/G,
so N and M◦ are the complement of these curves.

The valence of a vertex v is the number of edges of the form (v, v′) for some v′ ∈ V (G). A graph of
groups is a graph equipped with a group Gv for each vertex v ∈ V (G) (typically one allows edge
groups as well, but this will not be relevant for us).

For i ∈ {0, 1, 2}, let Ci denote the set of components of Pi, and let C = C0 ∪ C1 ∪ C2. For each
C ∈ C, choose a point pC ∈ C away from any gluing disks; we assume that pM0 = b0. For each
i ∈ {1, 2} and g ∈ G, we also fix a point pi,g ∈ M(D+

i,g)
∗ ⊆ M (we can equivalently view pi,g as

lying in (D−
i,g)

∗). We define G to be the graph whose vertex set V (G) is the set of all the points pC
and pi,g, and whose edge set E(G) consists of pairs (C, pi,g) and (pi,g, C) where pi,g ∈ C. Note that
each vertex pi,g has valence 2. We equip G with the structure of a graph of groups where the vertex
group at pC is GC = π1(C, pC) and whose vertex group at pi,g is trivial.

Following Higgins [Hig76], we can define the fundamental groupoid of Π(G) of G. Namely, Π(G) is
the groupoid whose objects are precisely the elements of V (G), and whose morphisms are generated
by the edges of G and the vertex groups of G, subject to the relation that for each e ∈ G, the
morphism associated to e is the inverse of the morphism associated to e. We define the fundamental
group π1(G,M0) to be the automorphism group of the object b0 = pM0 of Π(G).

There is a more concrete description of π1(G,M0) following Serre [Ser80]. Given an edge e = (v, v′),
we write i(e) = v and t(e) = v′. We define a path in G to be a pair (ê, r̂), where either ê = (e1, . . . , em)
is a tuple of edges with t(ej) = i(ej+1) and r̂ = (r0, . . . , rm) is a tuple with r0 ∈ Gi(e0) and rj ∈ Gt(ej)
for j ≥ 1, or ê = ∅ and r̂ = (r0) where r0 ∈ Gv for some v ∈ V (G). A loop in G based at a vertex v
is a path (ê, r̂) such that either ê = ∅ and r0 ∈ Gv, or i(e1) = t(em) = v. Given a path (ê, r̂), we get
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an associated morphism in Π(G) given by

|(ê, r̂)| := r0e1r1 · · · emrm.
Then π1(G,M0) is the group generated by elements of the form |(ê, r̂)|, where (ê, r̂) is a loop based at
the vertex M0. Note that we can naturally view π1(M0, b0) as the subgroup of π1(G,M0) generated
by paths with ê = ∅.

There is yet another characterization which will be useful for us. Let T be a spanning tree of
the graph underlying G. Let π(G) be the group obtained by identifying all the objects of Π(G)
(equivalently, π(G) is the free product of the groups π1(C, pC) with the free group on E(G), subject
to the relations e = e−1). Then we can define π1(G, T ) to be the group obtained by starting with
the group π(G) and adding the relation e = 1 for each edge in T . By [Ser80, Prop I.20], the natural
map π1(G,M0) → π1(G, T ) is an isomorphism for any spanning tree T .

Now, we can describe π1(M, b0) in terms of G. Given a component C of Pi, we let C∗ ⊆ M
denote the corresponding component of P ∗

i . For each edge e = (C, pi,g) of G, choose an oriented arc
ae in C

∗ joining pC to pi,g; we define ae by reversing the arc ae. Then, given a path (ê, r̂) in G, we
can construct a path γ(ê,r̂) in M by concatenating representatives of the elements rj with the arcs
aej . The path γ(ê,r̂) is well-defined up to homotopy rel the points pC and pi,g. Then we have the
following.

Lemma 4.2. There is an isomorphism

π1(G,M0) ∼= π1(M, b0)

which sends the element |(ê, r̂)| to the loop γ(ê,r̂) for any loop (ê, r̂) in G based at M0.

Proof. Let p ⊆M be the set of points pC for C ∈ C and pi,g for i ∈ {1, 2} and g ∈ G. Let Π(M,p)
be the groupoid whose objects are the points in p and whose morphisms are homotopy classes of
paths with endpoints in p. We can apply the groupoid version of van Kampen’s theorem (see [BS84])
to show that there is an isomorphism Π(M,p) ∼= Π(G) which induces the desired isomorphism on
fundamental groups. Namely, for each C ∈ C, we have a natural map Π(C∗,p ∩ C∗) → Π(G) which
maps the fundamental group π1(C

∗, pC) to the vertex group at pC , and which maps each arc ae for
e = (C, pi,g) to the morphism corresponding to e. Each 2-fold intersection of the sets C∗ for C ∈ C
is a disjoint union of simply connected subsets, and each 3-fold intersection is empty. Van Kampen’s
theorem then implies that the maps Π(C∗,p ∩ C∗) → Π(G) assemble into a map Π(M,p) → Π(G).
This map has a natural inverse, and is therefore an isomorphism. □

4.4. The invariant subgroup of the fundamental group. Recall that we let G0 ≤ G denote the
stabilizer of the basepoint b0. We have a well-defined action of G0 on π1(M, b0). Let π1(M, b0)

G0 ≤
π1(M, b0) denote the fixed points of this action. The following lemma constrains the subgroup
π1(M, b0)

G0 . We will use this result in Section 5 in the construction of our obstruction map (see
Lemma 5.2).

Lemma 4.3. The subgroup π1(M, b0)
G0 is contained in the subgroup π1(M0, b0) ≤ π1(M, b0).

Proof. Let M̂ → M denote the universal cover of M , and fix a base point b̂0 ∈ M̂ above b0. Let

P̂ ∗
i ⊆ M̂ denote the preimage of P ∗

i , and let P̂i be obtained by filling in the punctures. We call each

component of each P̂i a sheet of M̂ . Let M̂0 denote the sheet containing b̂0 (so M̂0 is a component

of P̂0, and is diffeomorphic to the universal cover of M0).
We will prove the lemma by contrapositive. Suppose γ ∈ π1(M, b0) is an element that is not

contained in the subgroup π1(M0, b0) ≤ π1(M, b0), and let g ∈ G0 be a generator (recall that G0 is

cyclic). Our goal is then to show that g(γ) ̸= γ. We will show that a lift of γ to M̂ travels through
a unique sequence of sheets up to homotopy, and then show that a lift of g cannot preserve this
sequence of sheets.
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Let γ̂ denote the lift of γ to M̂ based at b̂0. Since M̂ is simply connected, we may assume up

to homotopy rel endpoints that for any sheet W of M̂ , the intersection γ̂ ∩W is connected, i.e. γ̂

travels through each sheet at most once. We claim that γ̂ must end on a different sheet than M̂0.

Indeed, suppose for the sake of contradiction that γ̂ ends at a point on M̂0. Then we can assume

that γ̂ is entirely contained in the sheet M̂0. Then γ̂ projects to a loop in M entirely contained
within M0, contradicting that γ lies outside of the subgroup π1(M0, b0). Thus, γ̂ travels through a

sequence of distinct sheets M̂0 =W0,W1, . . . ,Wm with m > 0, where Wi is adjacent to Wi+1 and

Wm is a component of P̂0 (since the endpoint of γ̂ must live above b0, which lies in M0).
Next, we claim that this sequence of sheets is unique; that is, if γ̂ is homotopic rel endpoints

to an arc γ̂′ traveling through a sequence of distinct sheets M̂0 =W0,W
′
1, . . . ,W

′
m′ , then m′ = m

and Wj =W ′
j for all j. Suppose for contradiction that for some k < m, we have that Wj =W ′

j for

j ≤ k but Wk+1 ̸=W ′
k+1. Then the curves γ̂ and γ̂′ leave through two different disks on the sheet

Wk =W ′
k, say D and D′. Let Σ = ∂D and Σ′ = ∂D′. Equip Σ and Σ′ with orientations such that

γ̂ and γ̂′ intersect them positively, and let Σ′ denote Σ′ equipped with the opposite orientation.
Let δ be the loop obtained by concatenating γ̂ with the reverse of γ̂′. Then the loop δ and the
submanifold Σ⊔Σ′ have a positive signed intersection number. Since this is a homotopy invariant of

δ, it follows that the loop δ is not homotopic to a point, contradicting that M̂ is simply connected.

Now, lift g to a diffeomorphism ĝ : M̂ → M̂ that fixes the point b̂0. Since g preserves M∗
0 ⊆M

(as it fixes b0), it follows that ĝ preserves the sheet M̂0. However, since g does not fix any of the

gluing disks in M0, it follows that ĝ does not preserve any of the sheets adjacent to M̂0. Thus,
ĝ(γ̂) travels through a different sequence of sheets than γ̂. By the uniqueness statement above, this
means that ĝ(γ̂) is not homotopic rel endpoints to γ̂, and thus we can conclude that g(γ) ̸= γ. □

4.5. An infinite cover. Next, we will define the cover M̃ that we will use to construct our
obstruction map. Let G denote the graph of groups defined above, and let G denote the graph of
groups obtained from G by replacing the vertex group GM0 = π1(M0, b0) with the trivial group. By
Lemma 4.2, the natural map Π(G) → Π(G) induces a surjection

π1(M, b0) → π1(G,M0).

The kernel of this map is the normal closure ⟨⟨π1(M0, b0)⟩⟩ ≤ π1(M, b0) (this is easily seen using
the isomorphisms π1(G,M0) ∼= π1(G, T ) and π1(G,M0) ∼= π1(G, T ), where T is a spanning tree of

the graphs underlying G and G). We define π : M̃ →M to be cover associated to the kernel of this

map. We fix a basepoint b̃0 ∈ M̃ above b0 ∈M , so π1(M̃, b̃0) ∼= ⟨⟨π1(M0, b0)⟩⟩, and the deck group

of M̃ is the group Λ := π1(G,M0).

Observe that the cover M̃ is trivial over M∗
0 , i.e. each component of π−1(M∗

0 ) projects diffeomor-
phically onto M∗

0 . On the other hand, if C∗ is a component of P ∗
1 or P ∗

2 , or if C
∗ is a component of

P ∗
0 \M∗

0 , then each component of π−1(C∗) is the universal cover of C∗. Note that it is possible that

π1(M0, b0) is trivial, in which case G = G and M̃ is simply the universal cover of M .

The cover M̃ will be infinite-sheeted; we can construct an infinite subgroup of the deck group

Λ = π1(G,M0) as follows. Fix i ∈ {1, 2}. Let G′
i be the induced subgraph of G whose vertices are

the points pC for C ∈ C0 ∪ Ci together with the points pi,g lying on each C ∈ C0 ∪ Ci, and we define

Gi to be the component of G′
i containing the vertex pM0 = b0 (we equip Gi with the same vertex

groups as G). We define Λi := π1(Gi,M0), and observe that Λi is naturally a subgroup of Λ.

Lemma 4.4. At least one of the following is true:

• Gi has at least two nontrivial vertex groups GC for C ∈ Ci, or
• Gi contains a cycle.

In particular, the subgroup Λi ≤ Λ is infinite.
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Proof. Observe first that each component of Pi contains the same number of gluing disks. Thus, we
analyze two cases: the case that each component has a single gluing disk, and the case that each
component has at least two gluing disks.

Suppose first that each component of Pi has a single gluing disk. In this case, we claim that
Gi contains at least two nontrivial vertex groups GC for C ∈ Ci. First, observe that since each
component has a single gluing disk, the cover P ◦

i → Qi must be trivial. This means that G acts
freely on the components of P ◦

i and each component is diffeomorphic to Qi. Then G must act freely
on Pi, so Pi = P ◦

i . Thus each component of Pi is not simply connected, since Qi is not simply

connected. To complete the proof, we need to check that Gi contains at least two vertices of the
form pC for C ∈ Ci. But this follows since each component of P0 contains at least two of the gluing
disks ∆+

i,g for g ∈ G, since the basepoint b0 ∈ M0 has a nontrivial G-stabilizer. In particular, we

see that Λi is infinite since it contains a free product π1(C) ∗ π1(C ′) for two distinct components
C,C ′ ∈ Pi.

Otherwise, suppose each component of Pi has at least two gluing disks. In this case, we
claim that Gi contains a cycle; the fact that Λi is infinite then follows from the isomorphism
π1(Gi,M0) ∼= π1(Gi, T ) for any spanning tree T . As in the previous case, we observe that each
component of P0 also contains at least two of the gluing disks ∆+

i,g for g ∈ G. Therefore, since each

component of P0 and Pi contains at least two gluing disks, each vertex of Gi must have valence at
least 2. Thus Gi must contain a cycle, as any tree contains a vertex of valence 0 or 1. □

4.6. The homology of the cover. The key property of the cover M̃ is that the homology group

Hn−1(M̃ ;Z/ℓZ) is not finitely generated. In fact, we will describe an infinite dimensional subspace

of Hn−1(M̃ ;Z/ℓZ). In order to do so, we establish some notation.
Let GM0 ≤ G denote the stabilizer of M0 (with respect to the action of G on the components of

P0). Then for each i ∈ {1, 2}, since M0 contains the gluing disk D+
i,id, it follows that the disks D+

i,g

for g ∈ GM0 are precisely the gluing disks contained in M0. Note that G0 ≤ GM0 .

Let Wid be the component of π−1(M∗
0 ) ⊆ M̃ containing the base point b̃0. Then, for u ∈ Λ, let

Wu be the image of Wid under u. We will call each Wu a sheet of M̃ . For each u ∈ Λ, the cover

π : M̃ → M restricts to a diffeomorphism Wu → M∗
0 . Recall that for g ∈ GM0 , we let Σi,g ⊆ M0

denote the boundary sphere of the disk D+
i,g. On Wu, let Σi,g,u be the copy of Σi,g for i ∈ {1, 2} and

g ∈ GM0 .

Now, we can construct an infinite linearly independent subset of Hn−1(M̃ ;Z/ℓZ) indexed by the
subgroup Λ2 defined above.

Proposition 4.5. For any two distinct pairs (g, u), (g′, u′) ∈ GM0 × Λ2, the spheres Σ1,g,u and

Σ1,g′,u′ represent nonequal classes in Hn−1(M̃ ;Z/ℓZ). Moreover, the set

S = {[Σ1,g,u] ∈ Hn−1(M̃ ;Z/ℓZ) | g ∈ GM0 , u ∈ Λ2}

is an infinite linearly independent subset of Hn−1(M̃ ;Z/ℓZ).
To prove Proposition 4.5, we need the following preliminary lemma.

Lemma 4.6. For any i ∈ {1, 2}, g ∈ GM0, and u ∈ Λ, the complement M̃ \ Σi,g,u has two
components, and each component is noncompact.

Proof. We begin by showing that M̃ \ Σi,g,u is disconnected (and hence has two components). If

M̃ \Σi,g,u were connected, then by cutting M̃ along Σi,g,u, we could construct a simple closed curve
that intersects Σi,g,u once. Since mod 2 intersection numbers are a homotopy invariant, it’s therefore

enough to show that every loop in M̃ has an even intersection number with Σi,g,u.

Let γ be a loop in M̃ . Up to homotopy, we may assume that γ is based at b̃0. Let γ be the image

of γ in M , so γ is a loop based at b0. Since π1(M̃, b̃0) is the normal closure ⟨⟨π1(M0, b0)⟩⟩, we know
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that that γ homotopic to a concatenation of loops γ1, . . . , γm where each γj is freely homotopic
into the subspace M∗

0 ⊆M . This means that γ is homotopic to a concatenation of loops γ1, . . . , γm
where each γj is freely homotopic into Wuj for some uj ∈ Λ. This implies that the intersection
number of γ with any sphere of the form Σi,g,u must be even as desired.

Now, we can show that each component is noncompact. First, we claim that each component

M̃ \ Σi,g,u contains at least one sheet Wu′ for some u′ ∈ Λ. To prove this, it’s enough to find a

loop γ in M based at b0 which has a lift to an arc in M̃ that passes through Σi,g,u once. Let C
be the component of Pi containing D

−
i,g. If C is not simply connected, then we can construct γ by

conjugating a nontrivial element of π1(C, pC) with a path from b0 to pC . Otherwise, assume each
component of Pi is simply connected. Then it’s enough to show that the sphere Σi,g is non-separating
in M , since then we can take γ to be a loop that intersects Σi,g once. To prove this, suppose for
contradiction that Σi,g separates M . Then for any g′ ∈ G, the sphere Σi,g′g is also separating. This

implies that every edge of the graph Gi is separating, which implies that the graph underlying Gi is
a tree, contradicting Lemma 4.4.

Now, we can show that each component of M̃ \ Σi,g,u contains infinitely-many sheets, and is
therefore noncompact. From above, we know that each component contains a sheet Wu′ for some
u′ ∈ Λ. Then we can choose infinitely-many distinct elements of Λj (where j ̸= i), represent them
by loops in M which are disjoint from the spheres Σi,g for g ∈ G, and lift these loops to arcs based
at the sheet Wu′ . Then the endpoint of each lift will be a distinct sheet in the same component of

M̃ \ Σi,g,u.
□

Proof of Proposition 4.5. Throughout this proof, we use homology with Z/ℓZ-coefficients. Lemma
4.4 says that the group Λ2 is infinite, so it’s enough to show that Σ1,g,u and Σ1,g′,u′ represent distinct
classes and that S is linearly independent. In particuar, we must show that for any finite subset

{(g1, u1), . . . , (gm, um)} ⊆ GM0 × Λ2,

the homology classes [Σ1,g1,u1 ], . . . [Σ1,gm,um ] in Hn−1(M̃) are linearly independent.
Let V ⊆M0 denote the complement of Int(D+

i,g) for each i ∈ {1, 2} and g ∈ GM0 , so in particular

V ⊆M∗
0 . For u ∈ Λ, let Vu =Wu ∩ π−1(V ), so Vu is a compact oriented n-manifold with

∂Vu =
⋃

g∈GM0

Σ1,g,u ∪ Σ2,g,u.

Now, let X ′ ⊆ M̃ be the union of the sets Vuj for 1 ≤ j ≤ m. Then X ′ is a (possibly disconnected)
compact oriented n-manifold with boundary

∂X ′ =

m⋃
j=1

⋃
g∈GM0

Σ1,g,uj ∪ Σ2,g,uj .

Now, we claim that for each 1 ≤ j ≤ m, there exists an arc aj : [0, 1] → M̃ with aj(0) = b̃0
and am(1) ∈ Vuj , and such that am is disjoint from the spheres Σ1,g,u for all (g, u) ∈ GM0 × Λ. To
construct aj , let γ ∈ π1(M, b0) be an element mapping to the deck transformation uj ∈ Λ2. By the
definition of Λ2, we can represent γ by a loop in M which is disjoint from the gluing disks D±

1,g for

all g ∈ G. Then we can take aj to be the lift of this loop based at b̃0.
Let X the union of X ′ with a tubular neighborhood of each arc aj . Then X is a connected

compact oriented n-manifold with boundary. Each sphere Σ1,gj ,uj for 1 ≤ j ≤ m is a boundary

component of X. Let Y ⊆ M̃ be the closure of M̃ \X, so Y is a (possibly disconnected) non-compact
oriented n-manifold with ∂Y = ∂X = X ∩ Y . Let L ⊆ Hn−1(X ∩ Y ) denote submodule spanned by
the classes [Σ1,g1,u1 ], . . . , [Σ1,gm,um ], so L is free submodule of rank m.



24 TRENT LUCAS

Let LX ⊆ Hn−1(X) and LY ⊆ Hn−1(Y ) denote the images of L induced by the inclusions
X ∩ Y ↪→ X and X ∩ Y ↪→ Y . We claim that the maps L → LX and L → LY are isomorphisms.
Assuming this claim, we can prove the proposition as follows. From Mayer-Vietoris, we have an
exact sequence

Hn−1(X ∩ Y ) → Hn−1(X)⊕Hn−1(Y ) → Hn−1(M̃).

Since L ∼= LX and L ∼= LY , the submodule LX ⊕ 0 ⊆ Hn−1(X)⊕Hn−1(Y ) intersects the image of

Hn−1(X ∩ Y ) trivially. Thus, LX ⊕ 0 embeds in Hn−1(M̃), proving the proposition.
Now, we can prove the claim. To show that L ∼= LX , it’s enough to show that the classes [Σ1,gj ,uj ]

for 1 ≤ j ≤ m are linearly independent in Hn−1(X). Consider the exact sequence

Hn(X, ∂X) → Hn−1(∂X) → Hn−1(X).

The middle term has a basis given by the components of ∂X. The image of the first map is the
submodule spanned by the sum of all the components of ∂X. The spheres Σ1,gj ,uj for 1 ≤ j ≤ m
are not the only boundary components of X, as X has at least one other boundary component
coming from either one of the arcs aj or one of the spheres Σ2,g,uj for some g ∈ GM0 . Thus, the
submodule of L ⊆ Hn−1(X ∩ Y ) = Hn−1(∂X) intersects the kernel of the second map trivially, and
hence L embeds in Hn−1(X).

We can show that L ∼= LY similarly. We again have an exact sequence

Hn(Y, ∂Y ) → Hn−1(∂Y ) → Hn−1(Y ).

It’s enough to show that L ⊆ Hn−1(∂Y ) = Hn−1(X ∩ Y ) intersects the image of the first map
trivially. Let Y1, . . . , Ym denote the components of Y . Then Hn(Y, ∂Y ) ∼= ⊕m

k=1Hn(Yk, ∂Yk). If Yk is
compact, then the first map sends the fundamental class in Hn(Yk, ∂Yk) to the sum of the boundary
components of Yk. Otherwise, if Yk is non-compact, then the group Hn(Yk, ∂Yk) is trivial. Then we
note that by Lemma 4.6 that each Σ1,gj ,uj is the boundary of some noncompact component Ykj of
Y . Thus we can conclude L intersects the image of the first map trivially as desired.

□

5. The Obstruction Map

In this section, we will construct the obstruction map that we use to prove part (ii) of Theorem
A. Fix a manifold M and a group G satisfying the assumptions of Theorem A. Then by assumption
we have an oriented submanifold B ⊆M which is fixed by some element of G, and whose homology
class in Hn−2(M ;Z/ℓZ) is trivial for some ℓ > 1. We fix a basepoint b0 ∈ B as in Lemma 4.1. Let

π : M̃ →M be the infinite-sheeted cover described in Section 4.5, and let b̃0 be a basepoint above

b0. Recall that the cover M̃ is trivial over the subset M∗
0 ⊆ M , and so in particular it is trivial

over B. We let B̃ be the component of π−1(B) containing the basepoint b̃0 (so π restricts to a

diffeomorphism B̃ ∼= B).
Our obstruction map is not defined on Ker(PG), but a closely related group. Let Diff(M,B)

denote the group of orientation-preserving diffeomorphisms of M that preserve B setwise (the
orientation of B need not be preserved), and let Mod(M,B) = π0(Diff(M,B)). Let ModG(M,B) ≤
Mod(M,B) and ModG(M) ≤ Mod(M) denote the subgroups of mapping classes with an equivariant
representative. Then there is a forgetful map F : Mod(M,B) → Mod(M) which restricts to a map

FG : ModG(M,B) → ModG(M).

Our goal in this section is construct a map

φ : Ker(FG) → Hn−1(M̃, B̃;Z/ℓZ).
We give a simple description of the map φ in Section 5.1; the rest of this section is devoted to

proving this map is well-defined. In Section 5.2, we describe how to obtain a homology class of M̃

from an isotopy. In Sections 5.3 and 5.4, we describe how a subgroup of isotopies on M lift to M̃ .
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We formally construct φ in Section 5.5. Throughout this section, we implicitly use homology with
Z/ℓZ-coefficients, but our arguments apply verbatim for other coefficients.

5.1. A simple description of the map. The obstruction map φ works as follows. Let α ∈ Ker(FG),
and let f be an equivariant diffeomorphism of M that represents α. Then f preserves B setwise,
and there is an isotopy h :M × [0, 1] →M with h0 = idM and h1 = f . This induces a map

r : B × [0, 1] →M

(b, t) 7→ ht(b).

In particular, r|B×{0} = idB and r|B×{1} is a diffeomorphism of B. Now, lift r to a map

r̃ : B × [0, 1] → M̃

which sends B × {0, 1} to B̃. Then by pushing forward the fundamental class of B × [0, 1], the map

r̃ yields an element x ∈ Hn−1(M̃, B̃). We define φ(α) = x.
It is not obvious that the map φ is well-defined with this description. One has to show that φ is

independent of the choice of representative f and the choice of isotopy h. One also has to show that

the map r lifts as desired; we can choose a lift r̃ sending B × {0} to B̃, but its not clear that this

lift will map B × {1} to B̃ (as opposed to some other component of π−1(B)).
Thus, in this section we will construct φ more formally so as to ensure that it is well-defined.

The above description will still be useful to compute φ in practice (which we will do in Section 6).

5.2. Homology classes from isotopies. We begin by describing how an isotopy of B̃ in M̃ gives
rise to a homology class.

There is a natural evaluation map

ev
B̃
: Diff(M̃)× B̃ → M̃

(f, b) 7→ f(b).

This map takes the subspace Diff(M̃, B̃)× B̃ to B̃. Applying the relative Künneth formula (see e.g.
[Spa81, Thm 5.3.10]), we get a map

H1

(
Diff(M̃),Diff(M̃, B̃)

)
⊗Hn−2

(
B̃
)
→ Hn−1

(
M̃, B̃

)
.

By pairing an element of H1

(
Diff(M̃),Diff(M̃, B̃)

)
with the fundamental class of B̃, we get a map

H1

(
Diff(M̃),Diff(M̃, B̃)

)
→ Hn−1

(
M̃, B̃

)
.

Now, we define the group

Iso(M̃, B̃) := π1

(
Diff(M̃),Diff(M̃, B̃), id

M̃

)
.

So, an element of Iso(M̃, B̃) is the homotopy class of an isotopy h : M̃ × [0, 1] → M̃ where h0 = id
M̃

and h1 restricts to a diffeomorphism of B̃. A priori, Iso(M̃, B̃) is just a (pointed) set, but it inherits

a group structure from Diff(M̃) (cf. [Gol81]): given two elements [f ], [g] ∈ Iso(M̃, B̃) represented by

isotopies f, g : M̃ × [0, 1] → M̃ with f0 = g0 = id
M̃

and f1(B̃) = g1(B̃) = B̃, the product [f ] · [g] is
represented by the isotopy

(f · g)t :=

{
f2t 0 ≤ t ≤ 1/2,

g2t−1 ◦ f1 1/2 ≤ t ≤ 1.

We define ψ : Iso(M̃, B̃) → Hn−1

(
M̃, B̃

)
to be the composition

Iso(M̃, B̃) → H1

(
Diff(M̃),Diff(M̃, B̃)

)
→ Hn−1

(
M̃, B̃

)
.
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We can interpret the map ψ as follows. Let [h] ∈ Iso(M̃, B̃), so h : M̃ × [0, 1] → M̃ is an isotopy

with h0 = id
M̃

and h1(B̃) = B̃. Since π : M̃ →M restricts to a diffeomorphism B̃ → B, there is a

well-defined inverse π−1 : B → B̃. We then get a map

r̃ : B × [0, 1] → M̃

(b, t) 7→ ht(π
−1(b)).

We have an induced map on relative homology

r̃∗ : Hn−1(B × [0, 1], B × {0, 1}) → Hn−1(M̃, B̃).

Then ψ([h]) is the image of the fundamental class under r̃∗.

Remark 5.1. Let Emb(B̃, M̃) denote the space of embeddings B̃ ↪→ M̃ , and let Sub(B̃, M̃) denote

quotient of Emb(B̃, M̃) by Diff(B̃) (which acts by precomposition). Then a theorem of Cerf [Cer61]

says that the map Diff(M̃) → Emb(B̃, M̃) is a fibration, and a theorem of Binz-Fischer [BF81]

says that the map Emb(B̃, M̃) → Sub(B̃, M̃) is a fibration. Thus the map Diff(M̃) → Sub(B̃, M̃)

is a fibration with fiber Diff(M̃, B̃). It follows that Iso(M̃, B̃) ∼= π1(Sub(M̃, B̃)), so the map ψ

can be viewed as an invariant of loops in Sub(M̃, B̃). Indeed, this was our original motivation in
defining the map ψ, but for the arguments in this section it is generally simpler to work with the

pair (Diff(M̃),Diff(M̃, B̃)) instead.

5.3. Isotopies and equivariant diffeomorphisms. Next, we will identify the relationship between
Ker(FG) and isotopies of B in M .

Similar to above, we define the group

Iso(M,B) := π1(Diff(M),Diff(M,B), idM ).

From the long exact sequence of the pair (Diff(M),Diff(M,B)), we have an exact sequence

π1 (Diff(M)) → Iso(M,B) → Mod(M,B)
F−→ Mod(M).

Equivalently, we have an exact sequence

π1 (Diff(M)) → Iso(M,B) → Ker(F) → 1.

The group Ker(FG) is a subgroup of Ker(F); let Iso(M,B)G ≤ Iso(M,B) denote the preimage of
Ker(FG). Thus we have an exact sequence

π1 (Diff(M)) → Iso(M,B)G → Ker(FG) → 1.

The map Iso(M,B)G → Ker(FG) is given by [h] 7→ [h1], where h : M × [0, 1] → M is an isotopy
with h0 = idM and h1(B) = B. Any element of Iso(M,B)G can be represented by an isotopy h
such that h1 is equivariant.

5.4. Lifting isotopies. Our next goal is to show that every element of the group Iso(M,B)G lifts

to an element of Iso(M̃, B̃).

Lemma 5.2. There is a well-defined map λG : Iso(M,B)G → Iso(M̃, B̃) such that λG([h]) is

represented by an isotopy h̃ : M̃ × [0, 1] → M̃ such that π ◦ h̃t = ht.

Proof. Let h : M × [0, 1] → M be an isotopy with h0 = idM and h1(B) = B. Then h lifts to an

isotopy h̃ : M̃ × [0, 1] → M̃ with h̃0 = id
M̃
. Since h̃ is a lift of h, we know that h̃1 preserves the set

π−1(B). Moreover, a homotopy of h lifts to a homotopy of h̃. We therefore have a map

Iso(M,B) → π1

(
Diff(M̃),Diff(M̃, π−1(B))

)
.
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Now, let Diff(M̃, π−1(B), B̃) be the group of diffeomorphisms preserving π−1(B) setwise, and

preserving the component B̃ setwise. Then we have a natural inclusion

π1

(
Diff(M̃),Diff(M̃, π−1(B), B̃)

)
↪→ π1

(
Diff(M̃),Diff(M̃, π−1(B))

)
.

We claim that the image of Iso(M,B)G is contained in the image of this inclusion. Assuming this,
we have a map

Iso(M,B)G → π1

(
Diff(M̃),Diff(M̃, π−1(B), B̃)

)
,

and we can obtain the map λG by post-composing with the natural map

π1

(
Diff(M̃),Diff(M̃, π−1(B), B̃)

)
→ Iso(M̃, B̃).

So, it remains to prove our claim. Let h :M×[0, 1] →M represent an element of Iso(M,B)G. This
means that h1 is an equivariant diffeomorphism f :M →M that preserves B. Let a : [0, 1] →M

be the path a(t) = ht(b0), i.e. a is the path traveled by the basepoint b0 under h. Then h̃ restricts

to a lift ã : [0, 1] → M̃ with ã(0) = b̃0. To check that h̃ preserves the component B̃, it enough to

check that ã(1) ∈ B̃. We will first prove this in the case that a is a loop, i.e. f(b0) = b0. Then we
will address the general case.

So, assume that f(b0) = b0. Our goal is to show that the loop a lifts to a loop in M̃ . It’s enough
to show that a represents an element of the subgroup π1(M0, b0) ≤ π1(M, b0). Let G0 ≤ G denote
the stabilizer of b0 (see Lemma 4.1 for a description of G0). Then by Lemma 4.3, it’s enough to
show that G0 fixes the element [a] ∈ π1(M, b0). Since π1(M, b0) splits as a free product by Lemma
4.2, it has a trivial center, and therefore it’s enough to show that [a]−1g0([a]) is central for any
g0 ∈ G0.

We can show that [a]−1g0([a]) is central as follows (we adapt an argument of Birman–Hilden
[BH73, Lem 1.3]). Let c : S1 → M be any loop based at b0. Applying the isotopy h to c, we get

that c ≃ a · f(c) · a, where · denotes concatenation and (−) denotes the reverse path. Applying g0,
we conclude

g0(c) ≃ g0(a) · g0(f(c)) · g0(a) ≃ g0(a) · f(g0(c)) · g0(a).
On the other hand, applying the isotopy h directly to the element g0(c), we get

g0(c) ≃ a · f(g0(c)) · a.

Thus, we conclude that

(a · g0(a)) · f(g0(c)) · (a · g0(a)) ≃ f(g0(c)).

Since any element of π1(M, b0) is represented by f(g0(c)) for some c (as f◦g0 induces an automorphism
of π1(M, b0)), we conclude that [a]−1g0([a]) is central as desired.

Finally, we must address the case that f(b0) ̸= b0. Note that in the argument above, we only
used the fact that f was G0-equivariant. So, it’s enough to find a G0-equivariant ambient isotopy of
M taking f(b0) to b0; we can then concatenate h with this isotopy to reduce to the case f(b0) = b0.

To build this isotopy, fix a G0-invariant tubular neighborhood of B (see [Bre72, Thm VI.2.2]).
Fix an (n− 2)-disk D ⊆ B containing b0 and f(b0), and choose an isotopy k : D × [0, 1] → D such
that k0 = id, k1(f(b0)) = b0, and kt(x) = x for all x in a neighborhood of ∂D and t ∈ [0, 1]. As in
Lemma 4.1, over D the tubular neighborhood is diffeomorphic to D ×D2, and G0 acts by rotations
on each D2-fiber. Choose a smooth function µ : [0, 1] → [0, 1] which equals 1 in a neighborhood of 0

and equals 0 in a neighborhood of 1. Then we define an isotopy k̂ : D ×D2 × [0, 1] → D ×D2 by

k̂t(x, re
iθ) = (kµ(r)t(x), re

iθ). Then k̂t is G0-equivariant since it is independent of θ. Moreover, since

k̂t is the identity on a neighborhood of ∂(D ×D2), it extends to a G0-equivariant ambient isotopy
of M . □
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5.5. Defining the obstruction map. Finally, we can define our obstruction map by combining
the maps λG and ψ. For emphasis, we make the Z/ℓZ-coefficients explicit moving forward.

We define the map φ̂ : Iso(M,B)G → Hn−1(M̃, B̃;Z/ℓZ) to be the composition

Iso(M,B)G
λG−−→ Iso

(
M̃, B̃

)
ψ−→ Hn−1(M̃, B̃;Z/ℓZ)

The main result of this section is then the following.

Proposition 5.3. The map φ̂ : Iso(M,B)G → Hn−1(M̃, B̃;Z/ℓZ) factors through a map

φ : Ker(FG) → Hn−1(M̃, B̃;Z/ℓZ).

Proof. Recall that we have an exact sequence

π1 (Diff(M)) → Iso(M,B)G → Ker(FG) → 1.

Let [h] ∈ Iso(M,B)G be an element in the image of π1 (Diff(M)). Our goal is to show that φ̂([h]) is

trivial. Applying the map λG, we lift [h] to an element [h̃] ∈ Iso(M̃, B̃). Then φ̂([h]) = ψ([h̃]), so

it’s enough to show that ψ([h̃]) = 0.
First, since [h] ∈ Iso(M,B)G lies in the image of π1(Diff(M)), we may assume that h1 = idM .

Then, the lift h̃1 will be a deck transformation of M̃ . Since h1 preserves the component B̃ ⊆ π−1(B),

and the deck group of M̃ acts freely on the components of π−1(B) (as B ⊆M∗
0 and the cover is trivial

over M∗
0 ), it must be that h̃1 = id

M̃
. Thus, h̃ in fact defines an element of H1

(
Diff(M̃);Z/ℓZ

)
.

Recall from Section 5.2 that we have an evaluation map

ev
B̃
: Diff(M̃)× B̃ → M̃,

and since subspace Diff(M̃, B̃)× B̃ maps into B̃, the relative Künneth formula gives us a pairing

H1

(
Diff(M̃),Diff(M̃, B̃);Z/ℓZ

)
⊗Hn−2(B̃;Z/ℓZ) → H1(M̃, B̃;Z/ℓZ).

On the other hand, we have have an evaluation map

ev
M̃

: Diff(M̃)× M̃ → M̃,

and the Künneth formula gives us a pairing

H1

(
Diff(M̃);Z/ℓZ

)
⊗Hn−2(M̃ ;Z/ℓZ) → H1(M̃ ;Z/ℓZ).

So, we have the following commutative diagram:

H1(S
1;Z/ℓZ) H1

(
Diff(M̃);Z/ℓZ

)
Hn−1(M̃ ;Z/ℓZ)

H1([0, 1], {0, 1};Z/ℓZ) H1

(
Diff(M̃),Diff(M̃, B̃);Z/ℓZ

)
Hn−1(M̃, B̃;Z/ℓZ)

∼=

The upper-left and lower-left horizontal maps are both induced by the isotopy h̃. The upper right

map comes from pairing a class with [B̃] ∈ Hn−2(M̃ ;Z/ℓZ) via the map ev
M̃
, while the lower right

map comes from pairing a class with the fundamental class [B̃] ∈ Hn−2(B̃;Z/ℓZ) via ev
B̃
.

The key observation is that the upper-right horizontal map is in fact the zero map. This
is because the class [B] ∈ Hn−2(M ;Z/ℓZ) is trivial by assumption, which implies that the class

[B̃] ∈ Hn−2(M̃ ;Z/ℓZ) is trivial (to see this, use the fact that π : M̃ →M restricts to a diffeomorphism

Wid
∼=M∗

0 , and apply Mayer-Vietoris to the subspaces Wid and M̃ \Wid). On the other hand, the

composition of the two lower horizontal maps is ψ([h̃]) by definition. Thus, we conclude that ψ([h̃])
is zero as desired. □
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6. An Element with Nontrivial Obstruction

In Section 5, we defined an obstruction map

φ : Ker(FG) → Hn−2(M̃, B̃;Z/ℓZ).
Our next goal is to construct an element α0 ∈ Ker(FG) for which φ(α0) is nontrivial.

First, we recall some notation from Section 4.6. Let GM0 ≤ G denote the stabilizer of M0 (with
respect to the action of G on the components of P0). Then the gluing disks D+

i,g for g ∈ GM0 are
precisely the gluing disks that lie on M0. We let Σi,g ⊆M denote the boundary of the gluing disk
D+
i,g, and for g ∈ GM0 and u ∈ Λ, and we let Σi,g,u denote the copy of Σi,g on the sheet Wu above

M0.
Let GB ≤ G denote the setwise stabilizer of B, so GB ≤ GM0 . For (g, u) ∈ GM0 × Λ, we let

[Σ1,g,u] denote the homology class of Σ1,g,u in Hn−1(M̃ ;Z/ℓZ). Since the map Hn−1(M̃ ;Z/ℓZ) →
Hn−1(M̃, B̃;Z/ℓZ) is injective (as B̃ has dimension n− 2), we can equivalently view [Σ1,g,u] as an

element of Hn−1(M̃, B̃;Z/ℓZ). Then we have the following.

Proposition 6.1. There exists an element α0 ∈ Ker(FG) such that

φ(α0) =
∑
g∈GB

[Σ1,g,id].

We will compute φ(α0) using the description of φ in Section 5.1.

6.1. An informal description of the construction. In order to motivate the construction of
this section, we start with an informal picture of the mapping class α0. Assume for simplicity that
GB = G. Assume also that the gluing disks on M0 are positioned in a tubular neighborhood of B.
We will construct an equivariant diffeomorphism f as a summand slide which rotates all the gluing
disks D+

1,g around B, and which fixes the remaining gluing disks. The path traveled by the center of

each D+
1,g is a meridian of B.

We can then (non-equivariantly) isotope to f to idM by modifying the path traveled by each
D+

1,g. In particular, we pull the path across B and then shrink it down to the trivial loop at the

center of each D+
1,g, as in Figure 4 (in our actual construction, this will isotope f to a product of

sphere twists, so we actually define α0 by multiplying f with a product of sphere twists).

Figure 4. We isotope f to idM by sliding the disks D+
1,g along shorter and shorter loops.

This gives us an isotopy ft with f0 = f and f1 = idM , where each ft is a summand slide. For some
range of times t1 ≤ t ≤ t2, the summand slide ft will push the gluing disk through B (this occurs as
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we pull the sliding path across B). The end result is that in the image of the map B × [0, 1] →M
given by (b, t) 7→ ft(b), we get a “bubble” around each gluing disk D+

1,g (see Figure 5). Thus in

homology, the map B × [0, 1] →M yields the sum of all the classes [Σ1,g] for g ∈ G. Since the cover

π : M̃ → M restricts to a diffeomorphism Wid → M0, we see the same phenomenon when we lift

this isotopy to M̃ .

Figure 5. During the isotopy ft, the sliding path of the disks D+
1,g runs into B,

creating a “bubble” around each disk (cf. Figures 8 and 9).

6.2. A family of diffeomorphisms of the 2-disk. Let D2 denote the closed unit 2-disk in
R2, and let C denote the group generated by a 2π/m-rotation. We begin by defining a family of
C-equivariant diffeomorphisms Fs : D

2 → D2 for s ∈ [0, 1]. In our construction of α0, we will apply
these diffeomorphisms to the fibers of a tubular neighborhood of B.

First, for i ∈ {1, 2} and j ∈ {1, . . . ,m}, let Ei,j be a smaller 2-disk in D2 such that for each i, the
disks Ei,1, . . . , Ei,m are permuted by C. We choose the disks small enough so that Ei,j is disjoint
from Ei′,j′ for all distinct pairs (i, j) and (i′, j′), and so that no Ei,j contains the origin. We arrange
the disks so that for each j, the centers of the disks E1,j and E2,j lie on the same radial line in D2,
with E1,j closer to the origin and E2,j farther. See Figure 6 for an illustration.

Let (r, θ) denote polar coordinates on D2 − {0}. Choose r1 < r2 such that the annulus X :=
[r1, r2]× [0, 2π) contains each disk E1,j for 1 ≤ j ≤ m within its interior, and such that the disks
E2,j for 1 ≤ j ≤ m are disjoint from X (see Figure 6). Choose ε > 0 such that the regions
[r1, r1 + ε]× [0, 2π) and [r2 − ε, r2]× [0, 2π) are disjoint from all the disks Ei,j . Let ξ : [0, ε] → [0, 1]
be a smooth function which equals 0 in a neighborhood of 0 and equals 1 in a neighborhood of
ε. Finally, let Sr ⊆ D2 − {0} be the circle of radius r ∈ (0, 1]. Then for t ∈ [0, 1], we define a
C-equivariant diffeomorphism Fs : D

2 → D2 as follows:

• For r ∈ [r1, r1 + ε], the map Fs acts by a ξ(r − r1)2πs-rotation on Sr.
• For r ∈ [r1 + ε, r2 − ε], the map Fs acts by a 2πs rotation on Sr.
• For r ∈ [r2 − ε, r2], the map Fs acts by a ξ(r2 − r)2πs-rotation.
• Outside of the annulus X, the map Fs acts by idD2 .

In particular, F0 = idD2 and F1 is a left Dehn twist about the inner boundary component of X
composed with a right Dehn twist about the outer boundary component of X.

6.3. An equivariant diffeomorphism: Step one. Our next goal is to use the family of diffeo-
morphisms Fs to construct an equivariant diffeomorphism f :M →M . The diffeomorphism f will
be a summand slide supported on P0, but we will need to carefully describe it in coordinates to
compute φ. As a first step, we will construct a disk slide f ′ :M0 →M0.

First, apply Lemma 4.1 to the action of GM0 on M0 to obtain a point b0 ∈ B and associated
closed neighborhood Zb0 ⊆M0. We let G0 denote the GM0-stabilizer of b0, so G0 is cyclic. In the
following discussion, we will implicitly identify Zb0 with Dn−2 ×D2.

Without loss of generality, we assume that the gluing disks D+
i,id for i ∈ {1, 2} lie in the interior

of Zb0 , and thus so do the gluing disks D+
i,g for g ∈ G0. Without loss of generality, we may also

assume that for all g ∈ G0 and i ∈ {1, 2}, there is a unique j ∈ {1, . . . ,m} such that the gluing disk
D+
i,g is contained in the interior of Dn−2 × Ei,j .
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Figure 6. The disks Ei,j and the annulus X. The submanifold B intersects D2 at the origin.

Fix a closed (n− 2)-disk K ⊆ Int(Dn−2) such that under the projection map Zb0 → Dn−2, the
image of each gluing disk D+

i,g lies in Int(K). Choose a larger closed disk K ′ ⊆ Int(Dn−2) such that

K ⊆ Int(K ′). Let ν : Dn−2 → [0, 1] be a smooth function which is identically 1 on K and which
is identically 0 outside of K ′. Then, we define f ′ : M0 → M0 to be the following G0-equivariant
diffeomorphism:

• on Zb0 , f
′ acts on the fiber {x} ×D2 by the diffeomorphism Fν(x),

• outside of Zb0 , f
′ acts by idM0 .

Note that since F1 fixes the disks Ei,j ⊆ D2 pointwise, it follows that f ′ fixes all of the gluing
disks in M0. In fact, f ′ represents a disk slide in Mod(M0,∆

0), where ∆0 the union of all the gluing
disks on M0. Indeed, we can build an isotopy from f ′ to idM0 by smoothly homotoping the function
ν to the constant 0 map. Under this isotopy, the 2-disks E1,1, . . . , E1,m move a full rotation about
the origin in each D2-fiber over K.

6.4. An equivariant diffeomorphism: Step two. Next, we will use f ′ to construct the desired
equivariant diffeomorphism f :M →M . To do so, we will first define a disk slide f ′′ on P0, which
will then induce a summand slide on M .

Let {b0, . . . , bℓ} ⊆ P0 denote the G-orbit of b0, and choose gj ∈ G such that gjb0 = bj . Let
Zbj = gjZb0 (this set is independent of the choice of gj). Then we define f ′′ : P0 → P0 to be the
following diffeomorphism:

• on Zbj , f
′′ acts by gj ◦ f ′ ◦ g−1

j ,

• outside of
⋃ℓ
j=0 Zbj , f acts by idP0 .

This definition is independent of the choice of gj . Moreover, one can directly check that f is
G-equivariant.



32 TRENT LUCAS

The diffeomorphism f ′′ represents a disk slide in Mod(P0,∆
+
1 ∪∆+

2 ) (recall that ∆
+
i is comprised

of the disks D+
i,g for g ∈ G). Indeed, the isotopy f ′ ≃ idM0 induces an isotopy f ′′ ≃ idP0 .

Since f ′′ fixes each gluing disk pointwise, it extends a diffeomorphism f :M →M which acts by
the identity outside of P ∗

0 . By definition, the diffeomorphism f is a summand slide. Moreover, since
f ′′ is equivariant, it follows that f is equivariant. Note that the isotopy f ′′ ≃ idP0 does not fix the
gluing disks at all times, and therefore does not induce an isotopy from f to idM .

6.5. Identifying a product of sphere twists. As discussed above, the diffeomorphism f is a
summand slide, and is induced by a disk slide f ′′ on P0. Let di,g denote the center of the gluing
disk D+

i,g. We can see from our explicit description of the map f ′ that the path traveled by di,g
under the isotopy f ′′ ≃ P0 is null-homotopic in P0. Therefore, by Proposition 2.6, the mapping
class [f ] ∈ Mod(M) lies in the subgroup generated by sphere twists about the spheres Σi,g = ∂D+

i,g

for (i, g) ∈ {1, 2} ×G.
In fact, we can explicitly determine the class [f ] as a product of sphere twists. For each point

bj , we have a diffeomorphism Zbj
∼= Dn−2 ×D2. Under this identification, each tangent space in

Zbj is naturally isomorphic to Rn−2 × R2. Fix a frame at di,g corresponding to the standard basis

of Rn−2 × R2. For i = 2, the frame is fixed throughout the isotopy f ′′ ≃ idP0 . For i = 1, the
basis vectors in Rn−2 remain fixed, while the basis vectors in R2 trace out a 2π-rotation. Thus, we
conclude that in Mod(M), we have an equality

[f ] =
∏
g∈G

τ1,g,

where τ1,g ∈ Mod(M) is the isotopy class of a sphere twist about Σi,g = ∂D+
1,g.

6.6. An explicit isotopy. Next, we construct an isotopy ft :M →M for t ∈ [0, 1] with f0 = f .
First, we construct an isotopy of the diffeomorphisms Fs : D

2 → D2. Choose an ambient isotopy
k : D2 × [0, 1] → D2 with k0 = idD2 which fixes the disks Ei,j pointwise at all times and which
pushes the annulus X across the origin, so that both boundary components of k1(X) have winding
number 0 about the origin (see Figure 7). Then, for t ∈ [0, 1], define Fs,t := kt ◦ Fs ◦ k−1

t . Thus
Fs,0 = Fs for all s, F0,t is the identity for all t, and F1,t is a product of opposite Dehn twists about
the two boundary components of kt(X).

Figure 7. The annus X at time t = 0 and t = 1.

Next, we can build the isotopy of f . For t ∈ [0, 1], let f ′t : M0 → M0 be the diffeomorphism
defined the same as f ′, except on each fiber {x} ×D2 of Zb0 , f

′
t acts by the diffeomorphism Fν(x),t
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instead of Fν(x). Then we build a disk slide f ′′t on P0 exact as how we built f ′′ from f ′, and f ′′t
induces a summand slide ft :M →M .

Note that for each fixed t we have an isotopy f ′t ≃ idM0 constructed the same way as the isotopy
f ′ ≃ idM0 , and this induces an isotopy f ′′t ≃ idP0 . The key observation is that the path traveled by
the center di,g of D+

i,g under the isotopy f ′′1 ≃ idP0 is null-homotopic in P0\B (note that when we

remove B from P0, this removes the origin from each D2-fiber of each Zb). Thus in the mapping
class group Mod(M \B), we have the equality

(6.1) [f1] =
∏
g∈G

τ1,g.

6.7. Constructing the element. Now, we will construct the desired element α0 ∈ Ker(FG). In
fact, we will construct an isotopy h : [0, 1] → Diff(M) such that h0 = idM and h1 is equivariant and
preserves B setwise; we can then let α0 = [h1]. The isotopy f1−t almost works for our purposes, but
the problem is that the diffeomorphism f = f0 is isotopic to a product of sphere twists, and thus
may not be isotopic to idM .

Let Ti,g :M →M be a sphere twist about ∂D−
i,g supported in a collar neighborhood ∂D−

i,g×[0, 1] ⊆
Pi\ Int(D−

i,g). Since ∂D+
i,g and ∂D−

i,g are isotopic spheres in M \ B, we know that Ti,g represents

the mapping class τi,g (in both Mod(M) and Mod(M \B)). Define h′ : [0, 1] → Diff(M) to be the
isotopy

h′t := f1−t ◦
∏
g∈G

T1,g.

From the equality (6.1) in Mod(M \B), it follows that there is an isotopy idM ≃ h′0 that fixes B at
all times. Thus, we construct h by concatenating the isotopy idM ≃ h′0 with the isotopy h′.

6.8. Analyzing the image. Let r : B × [0, 1] →M be the map r(b, t) = ht(b). Our next goal is to
describe the image of r. Recall that b0, . . . , bℓ are the points in the G-orbit of b0. Assume without
loss of generality that for some k ≤ ℓ, the points b0, . . . , bk lie on B, and the points bk+1, . . . , bℓ do
not lie on B. Let Z∗

bj
= Zbj ∩ P ∗

0 ⊆M . Note that Z∗
bj

is diffeomorphic to Dn−2 ×D2 with a finite

number of points removed (namely, the center of each gluing disk in Zbj ).
Now, let b ∈ B; then we can describe the loop r : {b}× [0, 1] →M as follows. Suppose first that b

lies in Z∗
b0
. Let K,K ′ ⊆ Dn−2 be the subsets described in the construction of f ′; we will identify K

and K ′ as subsets of B. If b lies in the (n− 2)-disk K, then following the description of the isotopy
Fν(b),t = F1,t, the restriction r : {b}× [0, 1] →M is a closed curve in the fiber ({b}×D2)∩P ∗

0 ⊆ Z∗
b0
.

One side of this loop contains the disks E1,j for j ∈ {1, . . . ,m}, and the other side contains the disks
E2,j for j ∈ {1, . . . ,m} (see Figure 8). As we vary from b from ∂K towards ∂K ′, this loop shrinks
down towards the origin, and for b outside of K ′, the loop r : {b} × [0, 1] →M is the constant loop
at b (see Figure 9).

Next, observe that if b lies in Z∗
bj

for 1 ≤ j ≤ k, then by applying the the element gj to Zb0 , we

see the same picture of the loop r : {b} × [0, 1] → M as in the case that b ∈ Z∗
b0
. Finally, if b lies

outside of the sets Zbj for each 0 ≤ j ≤ k, then r(b, t) = b for all t ∈ [0, 1].

6.9. Computing the obstruction. Finally, we can compute φ(α0) following the description of φ
given in Section 5.1. Let h : [0, 1] → Diff(M) be the isotopy constructed above, so h0 = idM and h1
represents α0. Let r : B × [0, 1] →M be the map r(b, t) = ht(b) as above. Note that the image of r
is contained in M∗

0 ⊆M .
Throughout the remainder of this section, we use homology with Z/ℓZ-coefficients. To prove

Proposition 6.1, it’s enough to show that the homology class r∗([B× [0, 1]]) ∈ Hn−1(M
∗
0 , B) is equal

to the sum of the classes [Σ1,g] for g ∈ GB. Indeed, the image of the lift r̃ : B × [0, 1] → M̃ is
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Figure 8. On the left is the loop r : {b} × [0, 1] →M for b ∈ K. On the right is a
slight perturbation of this loop for clarity.

Figure 9. The loop r : {b}× [0, 1] →M for b ∈ K ′ \K. On the left is the case that
b is closer to ∂K, on the right is the case that b is closer to ∂K ′. For some values of
b ∈ K ′ \K, the loop will intersect the disks E1,j .

contained in the sheet Wid. The diffeomorphism Wid
∼=M∗

0 induces an isomorphism

Hn−1(M
∗
0 , B) ∼= Hn−1(Wid, B̃)

which takes [Σ1,g] to [Σ1,g,id]. Then by Mayer–Vietoris, the natural map

Hn−1(Wid, B̃) → Hn−1(M̃, B̃)

is an embedding (cf. the proof of Proposition 4.5).
Moreover, since h1 fixes B pointwise, the map r descends to a map r : B × S1 →M∗

0 . We have
the following commutative diagram:

Hn−1(B × [0, 1], B × {0, 1}) Hn−1(B × S1, B × {∗}) Hn−1(B × S1)

Hn−1(M
∗
0 , B) Hn−1(M

∗
0 )

∼=

r∗

∼=

r∗
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Therefore, it’s enough to show that the map r∗ takes the fundamental class of B × S1 to the sum of
the classes [Σ1,g] ∈ Hn−1(M

∗
0 ) for g ∈ GB.

For j ∈ {0, . . . , k}, let Kj denote the copy of the (n−2)-disk K in Zbj , so each Kj is an (n−2)-disk
in B (recall that b0, . . . , bk are the points in the G-orbit of b0 that lie on B). Let B◦ be the closure

of B \
⋃k
j=0Kj . For each b ∈ ∂Kj , we saw above that the loop r : {b} × [0, 1] → {b} × D2 is a

simple closed curve γb that bounds a 2-disk Cb containing E1,1, . . . , E1,m. Let σj ∈ Hn−1(M
∗
0 ) be

the homology class obtained by taking r(Kj × [0, 1]) and capping the loop γb with the 2-disk Cb
for each b ∈ ∂Kj . Let σ◦ ∈ Hn−1(M

∗
0 ) be the homology class obtained capping the boundary of

r(B◦× [0, 1]) in the same way. Then we see that the homology class r∗([B×S1]) ∈ Hn−1(M
∗
0 ;Z/ℓZ)

is equal to the sum σ◦ + σ0 + · · ·+ σm.
The class σ◦ is trivial because the map r : B◦ × S1 → M∗

0 extends to a map B◦ ×D2 → M∗
0 .

Indeed, if b ∈ B◦ lies outside of each Zbj , then the map r : {b} × S1 →M∗
0 is the constant loop at b.

Otherwise, if b ∈ Zbj ∩B◦, then the loop r : {b} × S1 →M∗
0 is either the constant loop at b, or a

closed curve in a D2-fiber of Zbj which bounds 2-disk in the same fiber. 2

We also see that
σj =

∑
g∈G0

[Σ1,gjg].

for each 0 ≤ j ≤ k. Indeed, after we cap off r(Kj×S1), we get a manifold with corners that cobounds
an n-dimensional submanifold of M with the spheres Σ1,gjg for g ∈ G0. Thus the proposition follows.

7. Proof of Part (ii) of Theorem A

In this section, we will complete the proof of part (ii) of Theorem A. Fix a manifoldM and a finite
group G satisfying the hypotheses of Theorem A. Recall that we let ModG(M,B) ≤ Mod(M,B) and
ModG(M) ≤ Mod(M) denote the subgroups of mapping classes with an equivariant representative,
and we have a forgetful map FG : ModG(M,B) → ModG(M). In Section 5, we constructed a map

φ : Ker(FG) → Hn−1(M̃, B̃;Z/ℓZ),

where π : M̃ →M is the cover constructed in Section 4 and B̃ is a component of π−1(B). In Section
6, we constructed an element α0 ∈ Ker(FG) for which φ(α0) is nontrivial.

We prove Theorem A as follows. In Section 7.1, we show that it’s enough to prove the group
Ker(FG) is not finitely generated. In Section 7.2, we show that the obstruction map φ is equivariant

with respect to the subgroup L ≤ ModG(M,B) of mapping classes which lift to the cover M̃ . In
Section 7.3, we show that the L-orbit of φ(α0) contains an infinite linearly independent set of
homology classes, which completes the proof.

7.1. Reduction to the forgetful kernel. First, we will show that it’s enough to prove the kernel
Ker(FG) is not finitely generated.

Lemma 7.1. If Ker(FG) is not finitely generated, then Ker(PG) is not finitely generated.

Proof. Let ΓG(M,B) = π0(Diff(M,B)G), where Diff(M,B)G is the group of orientation-preserving
diffeomorphisms of M that preserve B setwise and commute with G. Then we have the following
commutative diagram:

ΓG(M,B) ModG(M,B)

ΓG(M) ModG(M)

Ψ

Φ FG

PG

2Note that this argument does not apply if b ∈ Kj , since then the loop r : {b} × S1 → M∗
0 might lie on a D2-fiber

of Zbj that contains the center of a gluing disk, and thus does not bound a 2-disk in the intersection of that fiber with

M∗
0 .
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Here Φ is induced by the inclusion Diff(M,B)G ↪→ Diff(M)G, and Ψ is induced by the inclusion
Diff(M,B)G ↪→ Diff(M,B). The maps Ψ and PG are surjective by definition of ModG(M,B) and
ModG(M). To see that the map Φ is injective, note first that if f is an equivariant diffeomorphism
that preserves B, then any equivariant isotopy of f must also preserve B setwise, since B is a
component of the fixed set of g0 ∈ G. Thus, if f represents an element of Ker(Φ), then there is an
equivariant isotopy f ≃ idM , and since this isotopy must preserve B, this implies that f represents
the identity in ΓG(M,B).

Suppose now Ker(FG) is not finitely generated. Since Ψ is surjective, we have a surjection
Ker(FG ◦ Ψ) → Ker(FG), and so Ker(FG ◦ Ψ) = Ker(PG ◦ Φ) is not finitely generated. Since
Φ is injective, we have that Ker(PG ◦ Φ) ∼= Ker(PG) ∩ Im(Φ). Thus it’s enough to show that
Im(Φ) has finite index in ΓG(M). But this follows since B is a component of Fix(g0), and any
equivariant diffeomorphism will permute the components of Fix(g0), and Fix(g0) has only finitely
many components since Fix(g0) is a closed submanifold and M is compact. □

7.2. Equivariance of the obstruction map. Next, we will show that the obstruction map
φ satisfies a certain equivariance property. Let Diff(M,B, b0) denote the group of orientation-
preserving diffeomorphisms of M that preservse B setwise and fix the basepoint b0 ∈ B, and let
Mod(M,B, b0) = π0(Diff(M,B, b0)). Let ModG(M,B, b0) ≤ ModG(M,B, b0) denote the subgroup
of mapping classes with an equivariant representative. Then, we let L∗ ≤ ModG(M,B, b0) denote

the subgroup of mapping classes that lift along the cover π : M̃ →M , and we let L ≤ ModG(M,B)
denote the image of L∗.

Since every β ∈ L∗ fixes the base point b0 ∈ M , any representative f has a distinguished lift

f̃ which fixes the base point b̃0 ∈ M̃ . Furthermore, since f preserves B setwise, it follows that f̃

preserves B̃ setwise. Thus we get a well-defined map L∗ → Mod(M̃, B̃). Post-composing with the

action on homology, we have an action of L∗ on Hn−1(M̃, B̃;Z/ℓZ).
First, we can show that the basepoint is irrelevant to this action.

Lemma 7.2. The action L∗ → Aut(Hn−1(M̃, B̃;Z/ℓZ)) factors through L.

Proof. Suppose β ∈ Ker(L∗ → L), and choose a representative f of β. Then f is isotopic to idM
through an isotopy preserving B setwise. This lifts to an isotopy from f̃ to a deck transformation.

Since this lifted isotopy preserves B̃, and the deck group of M̃ acts faithfully on the components of

π−1(B), we in fact have that f̃ is isotopic to id
M̃

through an isotopy preserving B̃ setwise. Thus f̃

acts trivially on Hn−1(M̃, B̃;Z/ℓZ). □

Thus, we have a well-defined action of L on Hn−1(M̃, B̃;Z/ℓZ). On the other hand, L acts on the
normal subgroup Ker(FG) ◁ModG(M,B) by conjugation. We can show that φ is equivariant with
respect to these two actions, at least up to finite index. Let L+ ≤ L denote the index 2 subgroup of
mapping classes which restrict to an orientation-preserving diffeomorphism of B. Then we have the
following;

Lemma 7.3. The map φ : Ker(FG) → Hn−1(M̃, B̃;Z/ℓZ) is L+-equivariant.

Proof. Take any α ∈ Ker(FG) and β ∈ L+. Our goal is to show that φ(βαβ−1) = β · φ(α).
First, choose an isotopy h : M × [0, 1] → M such that h0 = id and h1 represents α. Let

r : B × [0, 1] → M be the map r(b, t) = ht(b), and let r̃ : B × [0, 1] → M̃ be the lift mapping

B × {0, 1} to B̃. So, φ(α) is the image of the fundamental class under the natural map

r̃∗ : Hn−1(B × [0, 1], B × {0, 1};Z/ℓZ) → Hn−1(M̃, B̃;Z/ℓZ).
Next, let f be a representative of β; without loss of generality we may assume that f fixes the

basepoint b0 ∈ B. Define the isotopy hf :M × [0, 1] →M to be f ◦ h ◦ (f−1 × id), so hft = fhtf
−1.

Then the diffeomorphism hf1 represents βαβ−1. Let rf : B× [0, 1] →M be the map rf (b, t) = hft (b),
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and let r̃f : B × [0, 1] → M̃ be the lift maping B × {0, 1} to B̃. Then φ(βαβ−1) is the image of the
fundamental class under the map

r̃f∗ : Hn−1(B × [0, 1], B × {0, 1};Z/ℓZ) → Hn−1(M̃, B̃;Z/ℓZ).

Now, let f̃ be the lift of f along the cover π : M̃ → M that fixes b̃0. We claim that r̃f =

f̃ ◦ r̃ ◦ (f−1 × id). Indeed, we see that

π ◦
(
f̃ ◦ r̃ ◦ (f−1 × id)

)
= f ◦ π ◦ r̃ ◦ (f−1 × id)

= f ◦ r ◦ (f−1 × id)

= rf ,

so r̃f = f̃ ◦ r̃ ◦ (f−1 × id) by the uniqueness of lifts.
So, we have the following commutative diagram:

Hn−1(B × [0, 1], B × {0, 1};Z/ℓZ) Hn−1(B × [0, 1], B × {0, 1};Z/ℓZ)

Hn−1(M̃, B̃;Z/ℓZ)

Hn−1(M̃, B̃;Z/ℓZ)

(f−1×id)∗

r̃f∗

r̃∗

f̃∗

Since f−1 is an orientation-preserving diffeomorphism of B, the map f−1 × id acts by the identity
on Hn−1(B × [0, 1], B × {0, 1};Z/ℓZ). Thus, the lemma follows. □

7.3. Completing the proof. By Proposition 6.1, we know that

φ(α0) =
∑
g∈GB

[Σ1,g,id],

where GB ≤ G is the subgroup of G preserving B setwise. By Lemma 7.3, the map φ is L+-
equivariant. Thus, to prove Theorem A, it’s enough to show that the L+ orbit of

∑
g∈GB

[Σ1,g,id]

contains an infinite linearly independent subset of Hn−1(M̃, B̃;Z/ℓZ).
Recall from Proposition 4.5 that the set

S = {[Σ1,g,u] ∈ Hn−1(M̃ ;Z/ℓZ) | g ∈ GM0 , u ∈ Λ2}
is infinite and linearly independent, where GM0 is the G-stabilizer of M0 (so GB ≤ GM0) and

Λ2 ≤ π1(M) is the subgroup constructed in Section 4.5. The set S embeds into Hn−1(M̃, B̃;Z/ℓZ).
Thus, we can complete the proof of Theorem A with the following lemma.

Lemma 7.4. For each u ∈ Λ2, there exists βu ∈ L+ such that βu([Σ1,id,id]) = [Σ1,id,u], and for all
g ∈ GM0, βu([Σ1,g,id]) = [Σ1,g,u′ ] for some u′ ∈ Λ2.

Proof. Throughout this proof, we will use the notation of Sections 2 and 4. Recall that we define Λ2

as π1(G2,M0), and by Lemma 4.2, we can represent elements of Λ2 by loops in M based at b0 which
are disjoint from the gluing disks D±

1,g for all g ∈ G. Let M ′ denote the manifold obtained from

gluing P0 and P2 along the multidisks ∆±
2,g, and let M ′

0 denote the component of M ′ containing M0.

Then we can represent elements of Λ2 with loops in M ′
0.

Now, fix u ∈ Λ2. For g ∈ G, let d1,g denote the center of the gluing disk D+
1,g in P0. By choosing

an arc in M0 from b0 to d1,id, we get an identification π1(M
′
0, b0)

∼= π1(M
′
0, d1,id); let γid : S1 →M ′

0

be a loop based at d1,id representing the element u. Then for g ∈ G, let γg = gγid, so γg is a loop in
M ′ based at d1,g.
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Without loss of generality, we may assume that the loops γg are all disjoint. Choose an element δ ∈
π1(Fr∆+

1
(M ′)) which maps onto the tuple (γg)g∈G under the map π1(Fr∆+

1
(M ′)) →

∏
g∈G π1(M

′, d1,g).

Then δ determines a disk slide DS∆+
1
(δ) on M ′; since the loops γg are disjoint and permuted by

G, we may choose an equivariant representative f ′ of DS∆+
1
(δ). Since f ′ fixes the multidisks ∆±

1

pointwise, it extends to an equivariant diffeomorphism f : M → M . Since B has codimension 2,
we may assume that the loops γg are disjoint from B, and hence we may assume that f fixes B
pointwise.

Let βu ∈ ModG(M,B) be the element represented by f . Note that β lies in the subgroup
L+ ≤ ModG(M,B); indeed, β is liftable since f acts trivially on the subgroup π1(M0, b0) ≤ π1(M, b0)

and hence preserves the normal closure ⟨⟨π1(M0, b0)⟩⟩. Let f̃ : M̃ → M̃ be the lift fixing b̃0. Then

it follows by construction that f̃ preserves the Λ2-orbit of each [Σ1,g,id], and that βu maps [Σ1,id,id]
to [Σ1,id,u]. □

8. Proof of Theorem D

In this section, we prove Theorem D using Theorem A. For this proof, it will be simpler to work
with homeomorphisms, rather than diffeomorphisms. This is not a significant difference; if we let
M be a smooth manifold and G a finite group of diffeomorphisms satisfying the hypotheses of
Theorem A, then a slight modification of the proof of Theorem A shows that the kernel of the
map π0(Homeo(M)G) → π0(Homeo(M)) is not finitely generated (essentially, one can just replace
each instance of the word “diffeomorphism” with “homeomorphism” in Section 5 to extend our
obstruction map to the topological setting).

We prove Theorem D as follows. In Section 8.1, we recall the relationship between symmetric
automorphisms and branched covers of the unlink in S3. In Section 8.2, we define a “lifting map”
whose kernel is virtually isomorphic to (the topological version of) Ker(PG). In Sections 8.3 and
8.4, we study the orbifold fundamental group associated to the branched cover. We complete the
proof in Section 8.5 by using the orbifold fundamental group to show that Ker(Qk,d) is virtually
isomorphic to the kernel of the lifting map.

8.1. Branched covers of the unlink and symmetric automorphisms. Fix integers k, d > 1,
and let pk,d :Mk,d → S3 be the finite regular cover branched over the k-component unlink Ck ⊆ S3

and with deck group Gd = Z/dZ. For notational simplicity, we let p = pk,d, M =Mk,d, and G = Gd.
We note that the manifold M is homeomorphic to a connected sum of S1 × S2’s, though we will not
use this fact. 3

Let Homeo(S3, Ck) denote the group of orientation-preserving homeomorphisms of S3 pre-
serving Ck setwise (not necessarily preserving the orientation of Ck), and let Mod(M,Ck) =
π0(Homeo(M,Ck)). We have an isomorphism π1(S

3 \ Ck) ∼= Fk, where Fk is the free group of rank
k. We fix a basis {x1, . . . , xk} of Fk where each xi corresponds to a loop that winds once around the
ith component of Ck. As mentioned in Section 1.4, a theorem of Goldsmith [Gol81], building off the
work of Dahm [Dah62], says that the action of Mod(S3, Ck) on π1(S

3 \Ck) induces an isomorphism

Mod(S3, Ck) ∼= SymOut(Fk),

where SymOut(Fk) is the group of outer automorphisms sending each xi to a conjugate of some
x±1
j (Goldsmith actually proves an analogous result about the R3, but the above isomorphism

can easily be deduced, see e.g. [Luc25, Prop 5.1]). We let Mod+(S3, Ck) denote the finite index
subgroup of homeomorphisms preserving the orientation of Ck, and let SymOut+(Fk) denote its
image in SymOut(Fk). Then SymOut+(Fk) is the group of outer automorphisms sending each xi
to a conjugate of some xj .

3This can be seen by viewing S3 \ Ck as a k-fold connected sum (S3 \ C1)
#k and constructing a model of M as in

Section 4.
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8.2. The lifting map. Let M◦ = M \ p−1(C). Then the unbranched cover M◦ → S3 \ Ck is
classified by the natural map Fk → Z/dZ sending each xi to 1. Since precomposition by an element
of SymOut+(Fk) preserves this homomorphism, it follows that every element of Mod+(S3, Ck) lifts
along the cover p to an equivariant homeomorphism of M (see [Luc25, §2.4]). Let Mod(M) =
π0(Homeo(M)), and let ModG(M) be the subgroup of mapping classes represented by an equivariant
homeomorphism. Since any lift is well-defined up to a deck transformation, we get a lifting map

Lp : Mod+(S3, Ck) → ModG(M)/G.

which sends a mapping class to a lift.
Let ΓG(M) = π0(Homeo(M)G). Observe that the kernel Ker(Lp) is virtually isomorphic to the

kernel of the map PG : ΓG(M) → ModG(M). Indeed, since any equivariant (topological) isotopy of
M descends to an isotopy of S3 preserving Ck setwise, we get a map ΓG(M) → Mod(S3, Ck) with a
finite kernel and a finite-index image. This induces a virtual isomorphism between Ker(Lp) and
Ker(PG). As mentioned at the beginning of this section, the proof of Theorem A easily adapts to
the setting of homeomorphisms. Thus, we conclude that Ker(Lp) is not finitely generated for k ≥ 3.

8.3. The orbifold fundamental group. The branched cover p induces an orbifold structure Op

on S3, where each point of Ck is an orbifold point of order d. Then we have an isomorphism

πorb1 (Op) ∼= Z/dZ ∗ · · · ∗ Z/dZ︸ ︷︷ ︸
k times

=: Hk,d.

Indeed, the orbifold fundamental group is the quotient of π1(S
3 \ Ck) obtained by adding the

relations xdi = 1 for each i (see e.g. [HD84]). We let zi denote the image of xi in π
orb
1 (Op). The

branched cover p gives us the following commutative diagram with exact rows:

(8.1)

1 π1(M
◦) π1(S

3 \ Ck) G 1

1 π1(M) πorb1 (Op) G 1

where the map πorb1 (Op) → G = Z/dZ maps each zi to 1.

Since Mod+(S3, Ck) preserves the normal closure of the elements xd1, . . . , x
d
k, the action of

Mod+(S3, Ck) on π1(S
3 \Ck) descends to an action of Mod+(S3, Ck) on π

orb
1 (Op) by outer automor-

phisms. Let SymOut(Hk,d) denote the group of outer automorphisms sending each zi to a conjugate

of some z±j , and let SymOut+(Hk,d) denote the finite index subgroup sending each zi to a conjugate
of some zj . The projection Fk → Hk,d induces a natural map

Qk,d : SymOut(Fk) → SymOut(Hk,d).

It follows that the action of Mod+(S3, Ck) on π
orb
1 (Op) factors through the restriction

Q+
k,d : SymOut+(Fk) → SymOut+(Hk,d).

8.4. The restriction map. Let Aut(πorb1 (Op), π1(M)) denote the group of automorphisms of

πorb1 (Op) that preserve the subgroup π1(M). Since π1(M) is a normal subgroup of πorb1 (Op), we

know that Inn(πorb1 (Op)) ≤ Aut(πorb1 (Op), π1(M)), and so we define

Out(πorb1 (Op), π1(M)) := Aut(πorb1 (Op), π1(M))/ Inn(πorb1 (Op)).

Let G∗ denote the image of G in Out(π1(M)), and let OutG∗(π1(M)) denote its normalizer. Then
we claim there is a map

r : Out(πorb1 (Op), π1(M)) → OutG∗(π1(M))/G∗.
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To construct the map r, we start with the restriction map

r : Aut(πorb1 (Op), π1(M)) → Aut(π1(M)),

and post-compose to obtain a map

r′ : Aut(πorb1 (Op), π1(M)) → Out(π1(M)).

From the short exact sequence π1(M) ↪→ πorb1 (Op) ↠ G, we see that the map r′ takes Inn(πorb1 (Op))

to the group G∗. Since Inn(πorb1 (Op)) is normal in Aut(πorb1 (Op), π1(M)), it follows that G∗ is
normal in the image of r′. Thus the map r′ descends to the map r.

Now, applying the isomorphism πorb1 (Op) ∼= Hk,d, we can view SymOut+(Hk,d) as a subgroup of

Out(πorb1 (Op), π1(M)). Then r restricts a map

R : SymOut+(Hk,d) → OutG∗(π1(M))/G∗.

Lemma 8.1. The map R : SymOut+(Hk,d) → OutG∗(π1(M))/G∗ has a finite kernel.

Proof. Let PSymOut(Hk,d) be the finite index subgroup of SymOut(Hk,d) consisting of outer

automorphisms that send each zi to a conjugate of itself. Then it’s enough to show that R is
injective on PSymOut(Hk,d).

Suppose f represents an element of PSymOut(Hk,d) and R([f ]) is trivial. Our goal is to show that

f is an inner automorphism of Hk,d. Since R([f ]) is trivial, this means there exists ι ∈ Inn(Hk,d)
such that ι ◦ f restricts to the identity map on π1(M). It’s enough to show that ι ◦ f is inner. Thus,
we assume without loss of generality that f itself acts trivially on π1(M).

We will view elements of Hk,d as freely reduced words on the elements z1, . . . , zk. For each

1 ≤ i ≤ k, we have that f(zi) = wiziw
−1
i for some reduced word wi. Without loss of generality, we

may assume that wi does not end with a power of zi.
First, we claim that if wi is trivial for some i, then wi must be trivial for all 1 ≤ i ≤ k, in which

case we are done. To see this, suppose wi is trivial and let 1 ≤ j ≤ k with j ̸= i. Then the element
ziz

−1
j lies in the subgroup π1(M), and so since f is the identity on π1(M), we have that

ziz
−1
j = f(ziz

−1
j ) = ziwjz

−1
j w−1

j .

This is possible only if wj is trivial.
Otherwise, assume that wi is nontrivial for all i. Let i and j be arbitrary. Then we have that

ziz
−1
j = f(ziz

−1
j ) = wiziw

−1
i wjzjw

−1
j .

Given a reduced word w on the elements z1, . . . , zk, we say that a reduced word w′ is a left subword
(resp. right subword) of w if there exists a reduced word v such that w = w′v and the last letter of
w′ is not a power of the first letter of v (resp. w = vw′ and the last letter of v is the not a power of
the first letter of w′). We say the left (resp. right) subword is proper if v is nontrivial. Then the
above equality implies that

w−1
i wj = w

where w is either a proper left subword of w−1
i or a proper right subword of wj . Now, the equality

ziz
−1
j = wiziwz

−1
j w−1

j

implies that w is nontrivial, and either

wiziwz
−1
j w−1

j = w′
iz

−1
j w−1

j

where w′
i is a left subword of wi, or

wiziwz
−1
j w−1

j = wizi(w
−1
j )′
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where (w−1
j )′ is a right subword of w−1

j . Then we have that

ziz
−1
j = w′

iz
−1
j w−1

j or ziz
−1
j = wizi(w

−1
j )′,

and either case implies that wi starts with zi or wj starts with zj . But then from the equality

w−1
i wj = w,

we see that if wi starts with zi, then wj must start with zi, and if wj starts with zj , then wi must
start with zj . Thus, we conclude that wi and wj must start with the same letter. Since i and j were
arbitrary, we conclude that the words w1, . . . , wk all must start with the same letter z. Then if we
let f ′ = Inn(z) ◦ f , we have that f ′(zi) = viziv

−1
i where vi is a reduced word of shorter length than

wi. By repeating the argument inductively, we obtain a sequence of inner automorphisms ι1, . . . , ιm
such that ι1 ◦ · · · ιm ◦ f is trivial, and thus f is inner as desired. □

8.5. Proof of Theorem D. Now, we can prove Theorem D. First, note that if Ker(Qk,d) is not

finitely generated, then Ker(Q̂k,d) must also be not finitely generated. Indeed, we have the following
commutative diagram:

SymAut(Fk) SymAut(Hk,d)

SymOut(Fk) SymOut(Hk,d)

Q̂k,d

Φ Ψ

Qk,d

Here Φ and Ψ are both the quotient map by the group of inner automorphisms. If Ker(Qk,d)
is not finitely generated, then since Ker(Qk,d ◦ Φ) surjects onto Ker(Qk,d), we conclude that

Ker(Qk,d ◦Φ) = Ker(Ψ ◦ Q̂k,d) is not finitely generated. Now, since the map Fk → Hk,d is surjective,

it follows that Q̂k,d restricts to a surjection Inn(Fk) → Inn(Hk,d) = Ker(Ψ). Thus we have a short
exact sequence

1 → Ker(Q̂k,d) → Ker(Ψ ◦ Q̂k,d) → Ker(Ψ) → 1.

Since Ker(Ψ) = Inn(Hk,d) is finitely generated, it must be that Ker(Q̂k,d) is not finitely generated.
Thus, it remains to prove that the group Ker(Qk,d) is not finitely generated for k ≥ 3. As

discussed in Section 8.2, Theorem A implies that Ker(Lp) is not finitely generated for k ≥ 3. Thus
Theorem D is a consequence of the following proposition.

Proposition 8.2. The kernels of the maps

Lp : Mod+(S3, Ck) → ModG(M)/G

and
Qk,d : SymOut(Fk) → SymOut(Hk,d)

are virtually isomorphic.

Proof. Let R : SymOut+(Hk,d) → OutG∗(π1(M))/G∗ be the restriction map from Section 8.4.
Observe that if f is a homeomorphism of (S3, Ck) representing an element of Mod+(S3, Ck), then

the from the diagram (8.1), the action of a lift f̃ on π1(M) is obtained by restricting the action of f
on πorb1 (Op). Therefore we have the following commutative diagram:

Mod+(S3, Ck) SymOut+(Fk)

SymOut+(Hk,d)

ModG(M)/G OutG∗(π1(M))/G∗

∼=

Lp

Q+
k,d

R

Φ
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Here Φ is induced by the action of Mod(M) on π1(M) by outer automorphisms. To prove the
proposition, it’s enough to show that the maps Φ and R have finite kernels. We know that R has a
finite kernel by Lemma 8.1. We also know that Φ has a finite kernel since the kernel of the map
Mod(M) → Out(π1(M)) is the subgroup generated by sphere twists (see e.g. [HW10, Prop 2.1]),
and this subgroup is finite [McC90, Prop 1.2]. □
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Mathématique de France 79 (1961), pp. 227–380. issn: 2102-622X. doi: 10.24033/bsmf.
1567.
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