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Abstract. Given a finite group G acting on a surface S, the centralizer of G in the
mapping class group Mod(S) has a natural representation given by its action on the ho-
mology H1(S;Q). We consider the question of whether this representation has arithmetic
image. Several authors have given positive and negative answers to this question. We
give a complete answer when S has genus at most 3.

1. Introduction

The mapping class group Mod(S) of a closed surface S acts on the homologyH1(S;Q) and
preserves the intersection form, yielding the classical symplectic representation Mod(S)→
Sp(H1(S;Q)). In this paper, we study an equivariant refinement of the symplectic rep-
resentation. Namely, given an action of a finite group G on a surface S, the symplectic
representation restricts to a map on centralizers Φ : Mod(S)G → Sp(H1(S;Q))G. It is well
known that the image of the symplectic representation is Sp(H1(S;Z)) ∼= Sp(2g,Z). In
particular, the image is an arithmetic subgroup, meaning it has finite index in the integer
points of its Zariski closure. In the equivariant case, we can ask whether the same is true:
is the image of Φ an arithmetic subgroup?

This question can be refined as follows. Observe that H1(S;Q) splits into isotypic compo-
nents H1(S;Q)V for each irreducible Q-representation V of G. The group Sp(H1(S;Q))G

preserves this decomposition and hence splits as a product. So, Φ induces representations

ΦV : Mod(S)G → AutQ[G](H1(S;Q)V , î),

where î is the intersection form. We now ask:

Question 1.1 (The arithmeticity question). For a given irreducible representation V , is
the image of ΦV an arithmetic subgroup?

If the action of G is free and S/G has sufficiently high genus, then for every V , the
answer to the arithmeticity question is known to be “yes” for abelian G by Looijenga
[Loo97], and “yes” for many non-abelian cases by Grunewald, Larsen, Lubotzky, and
Malestein [Gru+15]. On the other hand, Deligne and Mostow [DM86] produced examples
of non-free cyclic actions where the answer is “no”. As a first step towards understanding
precisely how often the image of ΦV is arithmetic, we offer a complete answer for low genus
cases.

Theorem 1.2. If S has genus g ≤ 3, then for every action of a finite group G on S and
for every irreducible Q-representation V of G, the image of the map ΦV : Mod(S)G →
AutQ[G](H1(S;Q)V , î) is an arithmetic subgroup.
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In some cases, the image of ΦV is finite and hence automatically arithmetic. However, in
many other cases we show that the image of ΦV is in fact commensurable to the subgroup
AutZ[G](H1(S;Z)V , î). Our main strategy to do so is to develop an algorithm for computing

ΦV (f) when f ∈ Mod(S)G is a lift of any Dehn twist along the branched cover S → S/G.

Branched cover perspective. We can apply Theorem 1.2 to obtain arithmetic rep-
resentations of the mapping class group of the quotient. That is, if we let S◦ denote
the complement of the points with nontrivial G-stabilizers, then we can lift mapping
classes to obtain a representation Γ→ AutQ[G](H1(S;Q)V , î) on a finite index subgroup
Γ ⊆ Mod(S◦/G). The precise construction, following [Loo97] and [Gru+15], is detailed
in Section 2.2. We note that if S/G has genus h ≥ 3, then Putman and Wieland [PW13]
relate these representations to Ivanov’s question of whether Mod(S◦/G) virtually surjects
onto Z. However, S/G has genus h < 3 in all cases of Theorem 1.2.

The target group. The target group GV := AutQ[G](H1(S;Q)V , î) can be identified as
AutAV

(H1(S;Q)V , η), where AV ⊆ Q[G] is the corresponding simple factor of the Wedder-
burn decomposition and η is a Q[G]-valued skew-Hermitian form called the Reidemeister
pairing (see Section 2.2). In all the interesting cases of Theorem 1.2, we identify the group
GV explicitly as a symplectic group (with the important special case SL2(Q) = Sp2(Q)) or
a unitary group. More generally, as explained in [Gru+15], the extension of scalars GV (C)
will always be isomorphic to some Ok(C), Sp2k(C), or GLk(C).

Relation with prior work. As mentioned above, the arithmeticity question has been
answered in many cases. Looijenga [Loo97] proved that the answer is “yes” when G is
abelian, G acts freely, and S/G has genus h ≥ 2; in fact, he found the images of the
representations ΦV explicitly. For an arbitrary group G acting freely, Grunewald, Larsen,
Lubotzky, and Malestein [Gru+15] proved that if G acts freely, and S/G has genus h ≥ 3,
and the action extends to a “redundant” action on a handlebody, then the answer to the
arithmeticity question is “yes.” More recently, Looijenga [Loo21] gave an arithmeticity
criterion for arbitrary actions where S/G has genus h ≥ 2. There are also several results
known for cyclic branched covers of the sphere. For the hyperelliptic involution, A’Campo
[ACa79] answered the question affirmatively and in fact found the image of Φ explicitly.
Later, Deligne and Mostow [DM86] [Mos86] studied the monodromy of the family of curves

ym = (x− b1)k1 · · · (x− bn)kn

for distinct points b1, . . . , bn ∈ C and ki,m ∈ Z>0. As we explain in Section 3.2, the
monodromy of this family coincides with the representations ΦV for the cyclic group Cm.
They answer the arithmeticity question for certain values of ki and m (“yes” in some cases,
“no” in others). McMullen [McM12] answers the arithmeticity question affirmatively in
some additional cases where k1 = · · · = kn. The monodromy of this family also coincides
with the the Gassner representation of the pure braid group specialized at an mth root of
unity (one obtains the Burau representation in the case k1 = · · · = kn = 1), which was
proved to have arithmetic image by Venkataramana [Ven13; Ven14] when n− 1 ≥ 2m and
each ki is a unit mod m.

In this paper, we tackle several cases which are not covered by the above works, and
where their methods do not apply. The moduli space connections in [DM86] and [McM12]
do not readily extend to non-cyclic G. The proofs of arithmeticity in [Ven13; Ven14],
[Gru+15], and [Loo21] use the fact that in a high rank Lie group, one can generate an
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arithmetic subgroup with “enough” unipotent elements (c.f. [Ven14, Theorem 7]). However,
in almost every case we study, the group GV (R) has rank 1. Moreover, the most natural way
to find unipotent elements in the image of ΦV is to lift Dehn twists around non-separating
curves (e.g. as in [Loo97] and [Loo21]), but in most cases we consider S/G has genus h = 0,
and hence there are no non-separating curves.

We also note that most of the low genus actions are not free. One additional challenge
of working with non-free actions is that the character of H1(S;Q) as a G-representation
depends on the specific action, as opposed to the free case where it depends only on
G. Moreover, when G acts freely or G is abelian (i.e. in most of the works above), the
isotypic component H1(S;Q)V is always a free module over the corresponding simple factor
AV ⊆ Q[G], but it need not be free in general (see Section 3.3), which further complicates
the situation.

Several authors have studied aspects of homological representations beyond the arith-
meticity question, including applications to 3-manifold topology; see e.g. [Had20], [Kob12],
[Kob14], [Liu20], or [Sun17].

About the proof. The arithmeticity of the image of ΦV only depends on the action
of G up to conjugation in Homeo(S) and automorphisms of G. Up to this equivalence,
there are only finitely many actions of finite groups on surfaces of genus g ≤ 3. The
arithmeticity question is trivial in the cases g = 0 and g = 1, and so it suffices to examine
the finitely-many actions on genus 2 and 3 surfaces. In [Bro91], Broughton constructs a
complete list of such actions. We summarize the 35 cases where the arithmeticity question
is nontrivial in Table 1.

Twenty of the cases are immediate due to having a finite image, factoring through
smaller genus cases, or following from prior work on cyclic actions. In 3 cases, we show
by hand that Im(ΦV ) is arithmetic by understanding the action geometrically. In the 12
remaining cases, the image of ΦV is (conjugate to) a subgroup of SL2(Z). Given a set of
elements in SL2(Z), there is an algorithm to determine whether they generate a finite index
subgroup. Thus, as long as we can compute ΦV (f) for a set of f ∈ Mod(S)G, it is easy
to check if these matrices are enough to generate an arithmetic subgroup. We can find
elements of Mod(S)G by lifting elements of Mod(S◦/G), but in general it is not easy to
compute the action of such a lift on H1(S;Q). There is one class of elements in Mod(S)G

which admit simple geometric descriptions, namely lifts of powers of Dehn twists, which
we call partial rotations. Surprisingly, in all 12 cases, we find that partial rotations are in
fact enough to generate an arithmetic group.

To show that one can generate an arithmetic subgroup using partial rotations, we adapt
the geometric description into an algorithm to compute their action on homology. To build
this algorithm, we equip S with an explicit G-compatible cell structure; the partial rotation
is not quite a cellular map, but we can directly define a map on the cellular chain group
whose induced map on H1(S;Q) agrees with the action of the partial rotation. We carry
out the computations by implementing the algorithm in SageMath. The code is available
in a repository at [Luc22].

Further questions. As suggested above, in the final 12 cases, there is no reason to
expect a priori that partial rotations generate a finite index subgroup of GV (Z). A natural
question is whether Mod(S)G is generated by partial rotations in these cases, or equivalently,
whether the liftable subgroup of Mod(S◦/G) is generated by liftable Dehn twists. More
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generally, it would be of interest to find generating sets of Mod(S)G whose generators
admit simple geometric descriptions.

Additionally, the key property that makes our final 12 cases tractable is that these
representations land in SL2(Q). One might ask if there are any actions where GV ∼= SL2(Q)
but Im(ΦV ) is not commensurable to SL2(Z). Note that there are infinitely many actions
where GV ∼= SL2(Q) for a faithful irreducible representation V . For example, if we let
F3 = 〈x1, x2, x3〉 be the free group on 3 letters (i.e. the fundamental group of the four
times puncture sphere), then the surjection F3 → Sn given by x1 7→ (12), x2 7→ (12),
and x3 7→ (12 · · ·n) gives an action of G = Sn on a surface S such that S/G is a sphere
with 4 branch points. For n ≥ 5, every irreducible representation of G is faithful except
for the trivial and sign representations, and each simple factor of Q[G] is isomorphic to
some Mk(Q). Thus the character formula in Theorem 2.1 tells us that H1(S;Q) contains
two copies of some faithful irreducible representation V . By the arguments in Section
3.3, GV ∼= SL2(Q). We note that S has large genus in these examples, and the current
implementation of our algorithm is not fast enough to handle such cases.

Outline. The paper is organized as follows. In Section 2, we establish the necessary
background for the proof of Theorem 1.2. Namely, we recall the structure of H1(S;Q) as
a Q[G]-module, define the Reidemeister pairing η, and carefully define the target group
GV . In Section 3, we begin the proof of Theorem 1.2. We first summarize the cases and
explain which ones follow from simple reductions or prior work. For the remaining cases,
we identify the target group GV explicitly, and tackle some cases “by hand”. In Section 4,
we finish the proof of Theorem 1.2 by studying the cases where Im(ΦV ) ⊆ SL2(Z) (up to
conjugation and commensurability). We define partial rotations, develop an algorithm to
compute their action on homology, and explain how to determine if the resulting subgroup
of SL2(Z) has finite index. We record the results of our computations in Table 2.

Acknowledgements. We thank Bena Tshishiku for introducing us to this problem and
for countless helpful conversations throughout this work. We also thank Ethan Dlugie,
Justin Malestein, and Nick Salter for helpful conversations on the topics surrounding this
work, and we thank Benson Farb and Dan Margalit for helpful comments on an earlier
version of this paper.

2. Equivariant mapping classes and homology

In this section, we recall some facts about the representation Mod(S)G → Sp(H1(S))G

to establish the necessary background for the proof of Theorem 1.2. In particular, the
results in this section are all known by prior work, namely [Gru+15], [KS09], and the
references therein. In Section 2.1, we recall the structure of H1(S;Q) as a G-representation,
and in Section 2.2, we examine the target algebraic group GV .

2.1. Homology as a representation. Fix a finite group G, a closed surface S, and an
action of G on S. Let S◦ denote the surface obtained by removing the points of S with
nontrivial G-stabilizers. Then the quotient S◦ → S◦/G is a covering map, and it extends
to a branched cover S → S/G. The cover (and hence the action) is completely described
by the monodromy homomorphism ϕ : π1(S◦/G)→ G. Suppose S/G has genus h and n
branch points x1, . . . , xn. Then we fix a presentation

π1(S◦/G) = 〈c1, d1, . . . , ch, dh, x1, . . . , xn | [c1, d1] · · · [ch, dh]x1 · · ·xn = 1〉.



HOMOLOGICAL REPRESENTATIONS OF LOW GENUS MAPPING CLASS GROUPS 5

The monodromy homomorphism ϕ is thus given by a (2h+n)-tuple of elements of G which
satisfies the relation of this presentation.

Character formula. First, we present a formula for H1(S;Q) as a G-representation. Let
Q[G] denote the rational group ring of G. For every subgroup H of G, the action of G on
the set of cosets G/H gives rise to a permutation representation of G, which we denote by
Q[G/H].

Theorem 2.1 (Chevalley-Weil, Gaschütz, Koberda-Silberstein). As a Q[G]-module,

H1(S;Q) ∼=
Q2 ⊕Q[G]2h+n−2⊕n
i=1 Q[G/〈ϕ(xi)〉]

where Q denotes the trivial Q[G]-module.

Note that n = 0 if and only if G acts freely on S, i.e. S → S/G is an unbranched cover.
In this case, Theorem 2.1 reduces to the classic formula of Chevalley-Weil [CWH34]; see
also [Gru+15] for a topological proof. If n > 0, then the isomorphism in Theorem 2.1 is
realized by the natural surjection H1(S◦;Q)→ H1(S;Q); in particular, the result follows
from two facts:

(1) As Q[G]-modules, H1(S◦;Q) ∼= Q⊕Q[G]2h+n−2.
(2) As Q[G]-modules, Ker(H1(S◦;Q)→ H1(S;Q)) ∼= (⊕ni=1Q[G/〈ϕ(xi)〉]) /Q.

The first fact is due to Gaschütz [Gas54]; again see [Gru+15] for a topological proof. The
second fact is due to Koberda-Silberstein [KS09]; the idea is as follows. Observe that
Ker(H1(S◦;Q)→ H1(S;Q)) is spanned by one small loop around each puncture, with the
single relation that the sum of all these loops is trivial. The action of G on these loops is
precisely the permutation action of G on the punctures. The formula then follows from
the fact that the action of G on the fiber over the branch point xi is the permutation
representation Q[G/〈ϕ(xi)〉], and G acts trivially on sum of the punctures.

Isotypic components. We can decompose H1(S;Q) into its isotypic components. Namely,
let Irr(G) denote the set of irreducible Q-representations of G, and for every V ∈ Irr(G),
let mV denote the multiplicity of V in H1(S;Q). Then

H1(S;Q) =
⊕

V ∈Irr(G)

H1(S;Q)V ,

where H1(S;Q)V ∼= V mV . Every Q[G]-linear automorphism of H1(S;Q) preserves this
decomposition.

Moreover, recall the Wedderburn decomposition

Q[G] ∼=
∏

V ∈Irr(G)

MnV (DV ),

where DV is the division algebra EndQ[G](V ) and nV = dimDV
(V ). For each V ∈ Irr(G),

the action of Q[G] on V factors through MnV (DV ). We call AV := MnV (DV ) the simple
factor of Q[G] corresponding to V . Each simple factor has a corresponding idempotent
eV ∈ AV ; namely eV is the identity matrix InV . Note that left-multiplication by eV gives
the projections Q[G]→ AV and H1(S;Q)→ H1(S;Q)V .

We note that if G acts freely, then by Theorem 2.1 the isotypic component H1(S;Q)V
is a free AV -module. However, this module need not be free if G does not act freely, as we
see in Section 3.2.
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The Reidemeister pairing. Let î : H1(S;Q) ×H1(S;Q) → Q denote the intersection
form; this is a non-degenerate alternating bilinear form. As is well known (see e.g. [Loo97]

or [Gru+15]), one can upgrade î to a non-degenerate skew-Hermitian form via the action
of G. Namely, we define the Reidemeister pairing η : H1(S;Q)×H1(S;Q)→ Q[G] by

η(x, y) =
∑
g∈G

î(x, gy)g.

The non-degeneracy of η follows directly from that of î. The group ring Q[G] has the
inversion involution τ , defined on elements of G by τ(u) = u−1 and extended linearly.
With respect to τ , the Reidemeister pairing is a skew-Hermitian form, meaning that

• η is Q-bilinear,
• η(vx,wy) = vη(x, y)τ(w) for all x, y ∈ H1(S;Q) and v, w ∈ Q[G],

• η(y, x) = −η(x, y) for all x, y ∈ H1(S;Q).

Note that τ preserves preserves each simple factor AV ⊆ Q[G] [Gru+15, Lemma 3.2].
Moreover, the Reidemeister pairing restricts to a non-degenerate AV -valued skew-Hermitian
form on H1(S;Q)V . It is AV -valued because for every x, y ∈ H1(S;Q)V ,

η(x, y) = η(eV x, eV y) = eV η(x, y)τ(eV ) ∈ AV ,
and it is nondegenerate because an analogous argument shows that the isotypic components
are orthogonal with respect to η.

2.2. The action of mapping classes. As mentioned above, the symplectic representation
Mod(S) → Sp(H1(S;Q)) restricts to a representation Φ : Mod(S)G → Sp(H1(S;Q))G,
where the superscript denotes the centralizer. Note that an automorphism of H1(S;Q)

that commutes with G will preserve î if and only if it preserves the Reidemeister pairing,
i.e.

Sp(H1(S;Q))G = AutQ[G](H1(S;Q), η).

We let G = AutQ[G](H1(S;Q), η). Now G is a linear algebraic group defined over Q. Since
Mod(S) preserves the integer lattice H1(S;Z) ⊆ H1(S;Q),

Im(Φ) ⊆ AutZ[G](H1(S;Z), η) =: G(Z).

The group G(Z) is precisely the integer points of the algebraic group G.
Since every Q[G]-automorphism preserves the isotypic components,

G =
∏

V ∈Irr(G)

AutAV
(H1(S;Q)V , η).

We let GV = AutAV
(H1(S;Q)V , η). This is an algebraic group defined over K, where K

is the subfield of the center of DV that is fixed by τ . In most cases we study, K = Q.
Post-composing Φ with the projections πV : G → GV , we obtain maps ΦV : Mod(S)G → GV .
Now, let ΛV = AV ∩ Z[G] and let

H1(S;Z)V = H1(S;Q)V ∩H1(S;Z).

The image of G(Z) under the projection πV is given by

πV (G(Z)) = AutΛV
(H1(S;Z)V , η) =: GV (OK),

where OK is the ring of integers of K. In particular, GV (OK) is the integer points of the
K-algebraic group GV , and since Mod(S) preserves H1(S;Z)V , Im(ΦV ) ⊆ GV (OK).
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A subgroup of an algebraic group is arithmetic if it has finite index in the integer points
of its Zariski closure (in particular, finite subgroups are always arithmetic). It need not be
that Im(ΦV ) is Zariski dense in GV (e.g. if Mod(S)G is finite and GV (OK) is not), but it
will be in every interesting case of Theorem 1.2. Namely, we will show the following, from
which Theorem 1.2 follows.

Theorem 2.2. For every action of a finite group G on a surface S of genus g ≤ 3 and
every V ∈ Irr(G), the image of the representation ΦV : Mod(S)G → GV (OK) is either
finite or finite index.

Representation of the quotient. Theorem 1.2 yields arithmetic representations of
Mod(S◦/G) as follows.

Fix a base point ∗ on S◦/G and a base point ∗̃ on S in the fiber over ∗. Let Mod(S◦/G, ∗)
denote the based mapping class group of S◦/G, i.e. the group of homeomorphisms that
perserve the set of branch points and fix ∗, up to isotopy rel the branch points and ∗. Note
that Mod(S◦/G, ∗) acts on π1(S◦/G) and hence on the finite set Hom(π1(S◦/G), G). We
define the finite-index subgroup

LMod(S◦/G, ∗) := Stab(ϕ),

where ϕ : π1(S◦/G)→ G is the monodromy homomorphism.

For every [f ] ∈ LMod(S◦/G, ∗), the homeomorphism f has a unique lift f̃ : S◦ → S◦

which fixes ∗̃ and commutes withG. Thus, we get a well-defined lifting map LMod(S◦/G, ∗)→
Mod(S◦, ∗̃)G and hence a representation

Ψ : LMod(S◦/G, ∗)→ Sp(H1(S;Q))G.

The image of LMod(S◦/G, ∗)→ Mod(S◦, ∗̃)G is finite-index, and the map Mod(S◦, ∗̃)G →
Sp(H1(S;Q))G factors through Mod(S)G, so Im(Ψ) is commensurable to Im(Φ).

By [Gru+15, Proposition 8.1], the map Ψ virtually factors through Mod(S◦/G); the
idea is as follows. Point pushing elements of LMod(S◦/G, ∗) act on Ker(ϕ) = π1(S◦)
by inner automorphisms of π1(S◦/G). Since Ker(ϕ) is finite-index and H1(S◦) is the
abelianization of Ker(ϕ), point-pushing elements of LMod(S◦/G, ∗) map to finite order
elements under Ψ. Thus, if we take Γ ⊆ LMod(S◦/G, ∗) to be the preimage of a torsion-free
finite index subgroup of Sp(H1(S))G, then on Γ the map Ψ factors though a finite index
subgroup of Mod(S◦/G). One can then take the induced representation to get an arithmetic
representation of the full group Mod(S◦/G).

3. Dividing up the cases

We now begin the proof of Theorem 1.2. Fix an action of a finite group G on a surface S
of genus g ≤ 3; our goal is to show that the representations ΦV : Mod(S)G → GV defined
in Section 2 have an arithmetic image. Theorem 1.2 only requires work for genus g = 2 and
g = 3, since Mod(S2) is trivial and the symplectic representation Mod(T 2)→ Sp(H1(T 2;Z))
is an isomorphism. Moreover, the arithmeticity of an action of G on S depends only on the
equivalence class of the action, where two actions ρ1, ρ2 : G→ Homeo(S) are equivalent if
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there exist ψ ∈ Aut(G) and f ∈ Homeo(S) such that

G Homeo(S)

G Homeo(S)

ρ1

ψ g 7→fgf−1

ρ2

commutes. Thus, it is enough to verify Theorem 1.2 for a list of representatives of each
equivalence class of actions on genus 2 and 3 surfaces; in [Bro91], Broughton provides
precisely such a list. For each case, we show that it is arithmetic in one of five ways:

(1) Small quotient: If S/G has genus 0 and 3 or fewer branch points, then Mod(S)G is
finite and hence the action is automatically arithmetic.

(2) No faithful irreps: If H1(S;Q) does not contain any faithful irreducible subrepre-
sentations of G, then the arithmeticity reduces to lower genus cases.

(3) Prior work : These cases follow directly from another work, namely [ACa79], [DM86],
[Mos86], [Loo97], or [McM12].

(4) Lifting twists : If the group GV is isomorphic to SL2(Q), then we prove arithmeticity
by lifting twists (see Section 4).

(5) Direct proof : If a case does not fall into the above categories, then we provide an
individual proof of arithmeticity.

We summarize the cases in Table 1. About half of the cases on Broughton’s list are
small quotient cases, which we omit from the table. The first column is the label from
Broughton’s list; labels starting with 2 are genus 2 actions, and labels starting with 3
are genus 3 actions. For each case, the branching data is a tuple (h;m1, . . . ,mn) where
h is the genus of S/G and the mi are the orders of the branch points xi; the genus h is
omitted when h = 0, and exponents are used to denote repeated branching orders (e.g.
(23, 42) denotes (0; 2, 2, 2, 4, 4)). The monodromy homomorphism is described by a tuple of
elements of G, as explained at the start of Section 2 (Broughton calls this a “generating
vector”). Our notation is largely standard, but in particular:

• Cm denotes the cyclic group of order m, and we fix a generator c. For a product of
cyclic groups we let c′ and c′′ denote a generator of the second and third factor
respectively.
• Dm denotes the dihedral group of order 2m, with the presentation

Dm = 〈r, s | rm = s2 = 1, srs−1 = r−1〉.

• C4 ◦D4 denotes the central product of C4 and D4, with the presentation

C4 ◦D4 = 〈c, r, s | c4 = r4 = s2 = [c, r] = [c, s] = 1, c2 = r2, srs−1 = r−1〉.

We note that Broughton’s list contains two typos: the monodromy in 3.r.1 should be
(x, y, z, yz, x), and the second action in 3.ad.2 does not have a valid monodromy (the
correct entry (x, xzy, z2, yz) is not a surjective homomorphism and corresponds to the case
2.n).

In Section 3.1, we observe some simple reductions that handle the “small quotient”
(omitted from table) and “no faithful irreps” cases. In Section 3.2, we determine which
cases follow from prior work. In Section 3.3, we determine precisely the target group GV
in all remaining cases. In Section 3.4, we handle the “direct proof” cases. The remaining
cases are then handled by the process of lifting twists, which we describe in Section 4.
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Case G Branching data Monodromy Case type
2.a C2 (26) (c, c, c, c, c, c) Prior work
2.b C2 (1; 22) (1, 1, c, c) Direct proof
2.c C3 (34) (c, c, c−1, c−1) Prior work
2.e C4 (22, 42) (c2, c2, c, c−1) Prior work
2.f C2 × C2 (25) (c, c, c, c′, cc′) No faithful irreps

2.k.1 C6 (22, 32) (c3, c3, c2, c4) Prior work
2.k.2 D3 (22, 32) (s, s, r, r−1) Lifting twists
2.n D4 (23, 4) (s, sr, r2, r) Lifting twists
2.s D6 (23, 3) (s, sr, r3, r2) Lifting twists
3.a C2 (28) (c, c, c, c, c, c, c, c) Prior work
3.b C2 (1; 24) (1, 1, c, c, c, c) Direct proof
3.c C2 (2;−) (c, 1, 1, 1) Prior work
3.d C3 (35) (c, c, c, c, c−1) Prior work
3.e C3 (1; 32) (1, 1, c, c−1) Direct proof
3.f.I C4 (44) (c, c, c, c) Prior work
3.f.II C4 (44) (c, c, c−1, c−1) Prior work
3.g C4 (23, 42) (c2, c2, c2, c, c) Prior work
3.h C2 × C2 (26) multiple different actions No faithful irreps
3.i.1 C4 (1; 22) (c, 1, c2, c2) Lifting twists
3.i.2 C2 × C2 (1; 22) (c′, 1, c, c) No faithful irreps
3.j C6 (22, 62) (c3, c3, c, c−1) Prior work
3.k C6 (2, 32, 6) (c3, c4, c4, c) Prior work
3.m D3 (24, 3) (s, s, s, sr−1, r) Lifting twists
3.n D3 (1; 3) (s, sr, r) Lifting twists

3.q.1 C2 × C4 (22, 42) multiple different actions No faithful irreps
3.q.2 D4 (22, 42) (s, s, r−1, r) Lifting twists
3.r.1 (C2)3 (25) (c, c′, c′′, c′c′′, c) No faithful irreps
3.r.2 D4 (25) (s, s, sr, sr3, r2) Lifting twists
3.s.1 Q8 (1; 2) (i, j,−1) Direct proof
3.s.2 D4 (1; 2) (s, sr, r2) Lifting twists
3.y D6 (23, 6) (s, sr2, r3, r) Lifting twists
3.z A4 (22, 32) ((12)(34), (12)(34), (123), (321)) Lifting twists

3.ad.1 C2 ×D4 (23, 4) (c, s, scr−1, r) No faithful irreps
3.ad.2 C4 ◦D4 (23, 4) (s, cr, sr, c−1) Direct proof
3.al S4 (23, 3) ((12), (23), (13)(24), (243)) Lifting twists

Table 1. Summary of cases. The 18 easier cases are grayed out.

3.1. First reductions.

Small quotient. First, we can verify that “small quotient” cases are automatically
arithmetic.

Lemma 3.1. If S/G has genus h = 0 and n ≤ 3 branch points, then Mod(S)G is finite.
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Proof. Let SMod(S) ⊆ Mod(S) be the subgroup of symmetric mapping classes, i.e. mapping
classes represented by lifts of homeomorphisms of S◦/G. Let Γ ⊆ Mod(S◦/G) be the
subgroup of mapping classes that lift along S◦ → S◦/G. Lifting mapping classes gives
a well-defined surjection Γ � SMod(S)/G. Since Mod(S◦/G) is finite, G is finite, and
Mod(S)G ⊆ SMod(S), the lemma follows. �

No faithful irreps. Next, we show that if V ∈ Irr(G) is not a faithful representation,
then the representation ΦV factors through a lower genus case. In particular, if G has no
faithful irreducible representations, then the arithmeticity of a G-action reduces entirely to
lower genus cases.

Lemma 3.2. Let V ∈ Irr(G), and let N ⊆ G be its kernel (so V is also a representation
of G/N). Then there is an isomorphism AutAV

(H1(S;Q)V ) ∼= AutAV
(H1(S/N ;Q)V ) such

that the diagram

Mod(S)G AutAV
(H1(S;Q)V )

Mod(S/N)G/N AutAV
(H1(S/N ;Q)V )

∼=

commutes.

Proof. Note that the map q : S◦ → S◦/N is a G-equivariant covering map (where G acts
on S/N via G/N). Recall the transfer homomorphism q∗ : H1(S◦/N ;Q) → H1(S◦;Q)N

defined by sending a chain to the sum of its lifts; the map q∗ is in fact an isomor-
phism with inverse (1/|N |)q∗. Let B = Ker(H1(S◦;Q) → H1(S;Q)) and let B =
Ker(H1(S◦/N ;Q) → H1(S/N ;Q)). Since we are working over Q, the invariants func-
tor is exact, so Ker(H1(S◦;Q)N → H1(S;Q)N ) = BN . Since q∗ takes B to BN , it descends
to an isomorphism H1(S/N ;Q) ∼= H1(S;Q)N . The lemma follows from the observation
that H1(S;Q)V ⊆ H1(S;Q)N . �

Note that the cases in Table 1 where G has no faithful irreducible representations are
precisely those where G is a product.

3.2. Prior work.

Hyperelliptic involution. Note that cases 2.a and 3.a are precisely the action of the
hyperelliptic involution. In the genus 2 case, the hyperelliptic involution is central, and so
this case reduces to the symplectic representation Mod(S)→ Sp(H1(S;Q)). In the genus
3 case, the action is known to be arithmetic by A’Campo [ACa79].

Note also in the genus 2 cases, if G is of the form H × C2 where C2 acts by the
hyperelliptic involution, then the arithmeticity of the G-action reduces to the arithmeticity
of the H-action. This applies in particular to cases 2.f, 2.k.1, and 2.s.

Cyclic covers of the sphere. Suppose G = Cm = 〈c〉 and fix a cover S → S/G such
that S/G has genus 0 and n branch points. Let cki ∈ Cm be the image of the ith branch
point under the monodromy homomorphism ϕ : π1(S/G) → Cm, where ki ∈ {0, . . . ,m}.
In this case, the representation Φ arises as the monodromy of the family of curves

ym = (x− b1)k1 · · · (x− bn−1)kn−1 ,

where b1, . . . , bn−1 are distinct points of C.
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To see this, let PConfn−1 be the set of (b1, . . . , bn−1) ∈ Cn−1 such that bi 6= bj for all i

and j, and for each B = (bi) ∈ PConfn−1, let pB(x) = (x− b1)k1 · · · (x− bn−1)kn−1 and let
YB = C− {b1, . . . , bn−1}. Then we have a family of curves

YB → {(w, x,B) ∈ C∗ × C× PConfn−1 | w = pB(x)} → PConfn−1 .

Recall that π1(PConfn−1) is the pure braid group on n− 1 strands PBn−1. Viewing PBn−1

as the mapping class group of the (n−1)-times punctured disk Dn−1, the monodromy action
PBn−1 → PMod(SB) is the usual “capping homomorphism” obtained by the inclusion
Dn−1 ↪→ S0,n. The family YB has a fiberwise branched cover

SB → {(y, x,B) ∈ C∗ × C× PConfn−1 | ym = pB(x)} → PConfn−1 .

The cover SB → YB is precisely our cover S → S/G (the nth branch point xn is ∞).
Since the monodromy of family SB is obtained by lifting the monodromy of family YB, we
conclude that the monodromy of SB is commensurable to the map Ψ defined in Section
2.2, and hence commensurable to Φ.

This is precisely the family studied by Deligne-Mostow in [DM86] and [Mos86]. However,
they study in particular the monodromy action on H1(S;C) (technically they study the
action on H1(S;C), but we can simply dualize). So, we clarify the relationship between Q
and C coefficients. The intersection pairing î on H1(S;Q) extends to a skew-Hermitian
form on H1(S;C), namely the dual of the form defined on H1(S;C) by

(α, β) 7→
∫
S
α ∧ β.

Thus, the Reidemeister pairing η also extends naturally to a C[G]-valued form on H1(S;C).
The embedding H1(S;Q) ↪→ H1(S;C) yields a complexification map

Θ : Sp(H1(S;Q))G ↪→ U(H1(S;C))G.

In particular, the map Φ : Mod(S)G → Sp(H1(S;Q))G can be viewed as a map Mod(S)G →
U(H1(S;C))G. The generator c of G = Cm acts by a finite-order automorphism of H1(S;C)
which is automatically diagonalizable. Each eigenvalue is an mth root of unity. We let
ζ = e2πi/m, and denote the ζk-eigenspace by H1(S;C)ζk . Since U(H1(S;C))G preserves
the eigenspaces,

U(H1(S;C))G ∼=
m∏
k=1

U(H1(S;C)ζk).

First, we check that this decomposition matches our isotypic component decomposition of
G = Sp(H1(S;Q))G. Recall that the unique faithful irreducible Q-representation of Cm is
the Q-vector space Q(ζ), where c acts by ζ.

Lemma 3.3. The complexification map H1(S;Q)→ H1(S;C) takes the isotypic component
H1(S;Q)Q(ζ) to the sum of the eigenspaces⊕

k∈(Z/mZ)×

H1(S;C)ζk .

Moreover, on each eigenspace H1(S;C)ζk , the Reidemeister pairing restricts to a multiple

of î (via the natural projection C[G]→ C given by mapping the generator c to ζk).
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Proof. The first statement is purely a fact from the representation theory of G = Cm.
On the one hand, the Wedderburn decomposition of Q[G] is realized by the well-known
isomorphisms

Q[G] ∼= Q[x]/(xm − 1) ∼=
∏
d|m

Q[x]/(Φd(x))

where Φd(x) is the dth cyclotomic polynomial. On the other hand,

C[G] ∼=
m∏
k=1

C

where the projection onto the kth factor sends c to ζk. Thus the inclusion Q[G] ↪→ C[G]
maps

Q[x]/(Φm(x))→
∏

k∈(Z/mZ)×

C

via the maps x 7→ ζk, which precisely correspond to the embeddings Q(ζ) ↪→ C. In
particular, if we let eQ(ζ) be the idempotent of Q(ζ) ⊆ Q[G] and let ek be the idempotents
of C[G], then

eQ(ζ) =
∑

k∈(Z/dZ)×

ek.

Since the projections H1(S;Q)→ H1(S;Q)Q(ζ) and H1(S;C)→
⊕
H1(S;C)ζk are given

by multiplication by idempotents, the first statement of the lemma follows.
To prove the second statement, take any x, y ∈ H1(S;C)ζk . Viewing η(x, y) as an

element of C[G],

η(x, y) = ekη(x, y) = ek

m∑
`=1

î(x, c`y)c` = ek

m∑
`=1

î(x, ζk`y)c`.

Under the isomorphism ekC[G] ∼= C, this maps to

m∑
`=1

î(x, ζk`y)ζk` =
m∑
`=1

î(x, y)ζ−k`ζk` = mî(x, y).

�

Lemma 3.3 tells us that Θ : G ↪→ U(H1(S;C))G takes the subgroup

GQ(ζ) = AutQ[G](H1(S;Q)Q(ζ), η)

to the subgroup ∏
k∈(Z/mZ)×

U(H1(S;C)ζk).

Observe that the eigenspace H1(S;C)ζ−k is conjugate to the eigenspace H1(S;C)ζk . Recall
that if f is an automorphism of a Q-vector space W , then the induced map fC on the
complexification WC commutes with conjugation. This means that the action of Θ(GQ(ζ))
on H1(S;C)ζ−k is determined by its action on H1(S;C)ζk , and thus Θ(GQ(ζ)) embeds into
the product

H =
∏

k∈(Z/mZ)×/±1

U(H1(S;C)ζk).
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The isotypic component H1(S;Q)Q(ζ) is isomorphic to Q(ζ)` for some `, and the group

GQ(ζ) is a K-defined algebraic group isomorphic to U(h;Q(ζ)), where K = Q(ζ + ζ−1) and

h is a skew-Hermitian form on Q(ζ)` (given by the Reidemeister pairing). The embedding
of Θ(GQ(ζ)) corresponds to the Weil restriction of scalars; in particular, if we let S∞

denote the set of embeddings Q(ζ) ↪→ C up to conjugation, then the map Θ(GQ(ζ)) ↪→ H
corresponds to the map

U(h;Q(ζ)) ↪→
∏
σ∈S∞

U(σ(h))

given by sending a matrix to the tuple of its Galois conjugates.
Now, we can recall Deligne and Mostow’s results. For 1 ≤ i ≤ n let µi = ki/m. Suppose

that the following two conditions hold:

(1)
∑n

i=1 ki = 2,

(2) For each i, j such that µi+µj < 1, (1−µi−µj)−1 ∈ Z if i 6= j and (1−µi−µj)−1 ∈ 1
2Z

if i = j.

Under these hypotheses, Deligne and Mostow prove that U(H1(S;C)ζ) ∼= U(1, n− 3) and
the image of Θ(GQ(ζ)) in U(H1(S;C)ζ) is a lattice.

We note that if m is equal to 3, 4, or 6, then Q(ζ + ζ−1) = Q and there is only one
embedding Q(ζ) ↪→ C up to conjugation. Thus, the product H contains only the single
factor U(H1(S;C)ζ) and the embedding GQ(ζ) → Θ(GQ(ζ)) → H is an isomorphism. In
these cases, if the hypothesis of Deligne and Mostow holds, we conclude that Im(ΦQ(ζ)) is
arithmetic. This applies to every cyclic action on Table 1 with a genus 0 quotient except
cases 2.a, 3.a, and 3.f.I.

Remaining cases. There are two remaining cases that follow from prior work:

(1) Case 3.f.I, which follows directly from McMullen [McM12, Corollary 11.7].
(2) Case 3.c, which follows directly from Looijenga [Loo97].

3.3. Determining the target algebraic group. Using the character formula in Theorem
2.1, one can check that in every case in Table 1, H1(S;Q) contains at most one faithful
irreducible representation. By Lemma 3.2, this is the only isotypic component we need to
consider in each action. So, we summarize the following information for each remaining
case of Table 1:

(1) the faithful representation V ∈ Irr(G)
(2) the corresponding simple factor Mn(D) of Q[G], the restriction of the inversion

involution τ to Mn(D), and the corresponding fixed subfield K.
(3) the isotypic component H1(S;Q)V
(4) the Reidemeister pairing η on H1(S;Q)V
(5) the automorphism group GV = AutA(H1(S;Q)V , η) and its integer points G(OK).

Cyclic covers. Suppose G = Cm = 〈c〉.
(1) The unique faithful V ∈ Irr(G) is the Q-vector space Q(ζ) where ζ = e2πi/m and c

acts by ζ. Note that for m = 2 this is also called the sign representation, denoted
Q−.

(2) The corresponding simple factor is the field Q(ζ) (n = 1, D = Q(ζm)); the
projection Q[G]→ Q(ζ) is given by c 7→ ζ. The involution τ restricts to complex
conjugation on Q(ζ), and K = Q(ζ + ζ−1).

(3) The isotypic component is Q(ζ)` for some ` ∈ Z>0.
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(4) The Reidemeister pairing is a skew-Hermitian form h on the Q(ζ)-vector space
Q(ζ)`. If m = 2, h is in fact a symplectic form on Q`.

(5) GV ∼= U(h;Q(ζ)) and GV (OK) ∼= U(h;Z[ζ]). If m = 2, then in particular K = Q,
GV ∼= Sp(h;Q), and GV (Z) ∼= Sp(h;Z).

Dihedral covers. Suppose G = Dm for m ∈ {3, 4, 6}.
(1) The unique faithful V ∈ Irr(G) is the two dimensional representation

r 7→
(

0 −1
1 2 cos(2π/m)

)
, s 7→

(
0 1
1 0

)
.

(2) The corresponding simple factor is M2(Q); the projection Q[G] → M2(Q) is
precisely given by the representation V . For m = 4, the involution τ restricts to the
transpose involution B 7→ Bt. For m = 3 and m = 6, τ does not directly restrict
to the transpose, but we claim it is conjugate over Q to the transpose. From this
claim, we conclude that K = Q. The claim follows because any two involutions on
a simple Q-algebra that agree on the center are conjugate [PRR93, Lemma 2.10],
so it is enough to check that τ fixes the center of M2(Q). But this true since τ
is conjugate over R to the transpose, as V is conjugate over R to an orthogonal
representation.

(3) In every case we consider, the isotypic component is V 2, which is isomorphic as an
M2(Q)-module to M2(Q) itself.

(4) The Reidemeister pairing is determined by the single matrix F := η(I2, I2) ∈M2(Q).
The skew-Hermitian condition implies that F = −τ(F ); in the case m = 4 where τ
is the transpose, this implies that F is a multiple of the matrix J =

(
0 1
−1 0

)
.

(5) Note that AutM2(Q)(M2(Q)) = GL2(Q) and

GV = {B ∈ GL2(Q) | BFτ(B) = F}.

In the case m = 4, the condition BFτ(B) = F is equivalent to BJBt = J , and
we directly obtain that GV ∼= Sp2(Q) = SL2(Q) and GV (Z) ∼= SL2(Z). In the cases
m = 3 and m = 6, the fact that τ is conjugate over Q to the transpose implies
that that GV is conjugate over Q to Sp2(Q) = SL2(Q), and hence GV ∼= SL2(Q)
and GV (Z) ∼= SL2(Z).

Case 3.s.1. In this case G = Q8 (c.f. [Gru+15, Section 9.6]).

(1) The representation V ∈ Irr(G) is a 4-dimensional representation G → SL2(Q(i))
given by

i 7→
(

0 1
−1 0

)
, j 7→

(
i 0
0 −i

)
.

(2) The corresponding simple factor is the division algebra

D =

{(
α β

−β α

)
| α, β ∈ Q(i)

}
.

The projection Q[G]→ D is precisely given by the representation V . The inversion
involution τ restricts to the conjugate transpose B 7→ B∗, and K = Q(i+ i−1) = Q.

(3) The isotypic component is V , which is isomorphic as a D-module to D itself.
(4) The Reidemeister pairing is determined by the single matrix F := η(I2, I2) ∈ D.

The skew-Hermitian property implies that F ∗ = −F .



HOMOLOGICAL REPRESENTATIONS OF LOW GENUS MAPPING CLASS GROUPS 15

(5) Note that AutD(D) = D×. Now GV = {B ∈ D× | BFB∗ = F}, and GV (Z) is the
subgroup with entries in Z[i].

Non-free cases. The final three cases (3.z, 3.ad.2, and 3.al) are slightly different because
the isotypic component H1(S;Q)V is not a free module over the corresponding simple
factor. We will first examine such a scenario in generality, and then we examine our specific
cases below.

Suppose V ∈ Irr(G) appears in H1(S;Q) with multiplicity k. Suppose further that the
simple factor is Mn(L) for a number field L where k < n. Then H1(S;Q)V is isomorphic as
an Mn(L)-module to the set of n× k matrices with the left action of Mn(L). In particular
H1(S;Q)V is spanned over Mn(L) by the block matrix

E :=

(
Ik
0

)
.

First, we can identify the endomorphisms of H1(S;Q)V .

Lemma 3.4. As rings, EndMn(L)(H1(S;Q)V ) ∼= Mk(L)op.

Proof. We have a map Mk(L)→ EndMn(L)(H1(S;Q)) given by C 7→ TC , where TC is the
unique Mk(L)-linear map that multiplies E by the following block matrix:

TC(E) =

(
C 0
0 0

)
E.

To see that TC is a well-defined endomorphism, suppose that AE = BE for A,B ∈Mn(L).
Then A and B have the same first k columns, and so

TC(AE) = ATC(E) = A

(
C 0
0 0

)
E = B

(
C 0
0 0

)
E = BTC(E) = TC(BE).

We can see that this map is injective, additive, and satisfies TC1C2 = TC2TC1 . To see that
it is surjective, note that every T ∈ EndMk(L)(H1(S;Q)V ) is determined by where it sends
E, and so it suffices to show that T must send E to a n × k matrix where the bottom
n− k rows are all zero. But this follows since(

Ik 0
0 0

)
T (E) = T

((
Ik 0
0 0

)
E

)
= T (E). �

Now, we can better understand the Reidemeister pairing η in some particular cases. Note
first that the “Gram matrix” of η on H1(S;Q)V is the 1×1 matrix (η(E,E)) ∈M1(Mn(L)).
In other words, η is completely determined by the matrix F := η(E,E) ∈ Mn(L). Note
that the relation

F = η(E,E) = η

((
Ik 0
0 0

)
E,E

)
=

(
Ik 0
0 0

)
η(E,E) =

(
Ik 0
0 0

)
F

implies that

F =

(
?
0

)
for some k × n matrix ?. Now, suppose first that τ restricts to the transpose. In this case,
the relation F = −τ(F ) implies that F is a multiple of(

J 0
0 0

)
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where J ∈ Mk(L) is a skew-symmetric matrix. If instead τ restricts to the conjugate
transpose, then the relation F = −τ(F ) implies that F is a multiple of(

J 0
0 0

)
where J ∈Mk(L) is a skew-Hermitian matrix.

Case 3.z. In this case G = A4.

(1) The representation V ∈ Irr(G) is the 2-dimensional standard representation. In
particular V is the restriction of the representation of S4 given by

(1, 2) 7→

0 1 0
1 0 0
0 0 1

 , (2, 3) 7→

 0 0 −1
0 1 0
−1 0 0

 , (3, 4) 7→

 0 −1 0
−1 0 0
0 0 1

 .

(2) The corresponding simple factor is M3(Q); the projection Q[G] → M3(Q) is
precisely given by the representation V . The inversion involution τ restricts to the
transpose involution B 7→ Bt, and K = Q.

(3) The isotypic component is V 2. As an M2(Q)-module, we can take V 2 to be the
space of 3× 2 matrices with the left action of M2(Q).

(4) The Reidemeister pairing is completely determined by the matrix F := 〈E,E〉 ∈
M3(Q). Since τ restricts to the transpose, we conclude that F is a multiple of 0 1 0

−1 0 0
0 0 0

 .

(5) From the isomorphism EndM3(Q)(V
2) ∼= M2(Q) and our computation of F , we

conclude as in the dihedral cases that GV ∼= SL2(Q) and GV (Z) ∼= SL2(Z).

Case 3.ad.2. In this case G = C4 ◦D4.

(1) The representation V ∈ Irr(G) is the 4-dimensional representation G→ GL2(Q(i))
given by

c 7→
(
i 0
0 i

)
, r 7→

(
0 −1
1 0

)
, s 7→

(
0 1
1 0

)
.

(2) The corresponding simple factor is M2(Q(i)). The projection Q[G] → M2(Q(i))
is precisely given by V . The involution τ descends to the conjugate transpose
B 7→ B∗.

(3) The isotypic component is V . As an M2(Q(i))-module, we can take V to be the
space of 2× 1 matrices with the left action of M2(Q(i)).

(4) The Reidemeister pairing is completely determined by the matrix F := 〈E,E〉 ∈
M2(Q(i)). Since τ is the conjugate transpose, we conclude that F is a multiple of(

i 0
0 0

)
.

(5) EndM2(Q(i))(V ) ∼= M1(Q(i)) ∼= Q(i). It follows that GV ∼= U(1;Q(i)) and GV (Z) ∼=
U(1;Z[i]).

Case 3.al. In this case G = S4. The representation is the sign representation tensored
with the standard representation. This case proceeds precisely as case 3.z, and we conclude
that GV ∼= SL2(Q) and GV (Z) ∼= SL2(Z).
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3.4. Direct proofs of arithmeticity. We now give direct proofs for cases 2.b, 3.b, 3.e,
3.s.1, and 3.ad.2. For cases 2.b, 3.b, and 3.e, we directly find elements of Im(ΦV ) that
generate a finite index subgroup of GV (Z). The methods of Section 4 also apply to cases
2.b and 3.e, but these actions are simple enough that we can understand them directly; the
methods of Section 4 do not apply to 3.b because the codomain of ΦV is Sp(4,Z) in this
case. For cases 3.s.1 and 3.ad.2, we use the results of Section 3.2 to conclude that Im(ΦV )
is finite.

Throughout these proofs, for a simple closed curve c, let Tc denote the left Dehn twist
around c.

Case 2.b.

Figure 1. The action of C2 in Case 2.b.

In this case, G = C2 and S is a genus 2 surface. The action of G on S is the order 2
rotation pictured in Figure 1. Let ai, bi be the standard basis of H1(S;Q). We can see
directly that

H1(S;Q) = Q{a1 − a2, b1 − b2} ⊕Q−{a1 + a2, b1 + b2}
where Q denotes the trivial representation and Q− denotes the sign representation. Observe
that the Reidemeister pairing on H1(S;Q)Q− is simply 2̂i, and hence with respect to the
above basis, GQ− = SL2(Q) and GQ−(Z) = SL(2,Z). With respect to this basis, the map

Mod(S)C2 → GQ− maps

Ta1Ta2 7→
(

1 −1
0 1

)
Tb1Tb2 7→

(
1 0
1 1

)
.

Thus, we generate SL2(Z). In particular, Im(ΦQ−) is arithmetic.

Case 3.b.
In this case, G = C2 and S is a genus 3 surface. The action of G on S is the order 2

rotation pictured in Figure 2. Let ai, bi be the standard basis of H1(S;Q). We can see
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Figure 2. The action of C2 in Case 3.b.

directly that

H1(S;Q) = Q{a1 − a3, b1 − b3} ⊕Q−{a1 + a3, b1 + b3, a2, b2}

where Q denotes the trivial representation and Q− denotes the sign representation. Let
A1 = a1 + a3, B1 = b1 + b3, A2 = a2, B2 = 2b2, and let W = Z{A1, B1, A2, B2}. Note that
GQ−(Z) is commensurable to AutZ(W, η). Again the Reidemeister pairing on H1(S;Q)Q−
is 2̂i. If we let ω be the form on W defined in our basis by

ω =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 ,

then î = 2ω and η = 4ω on W . So, Aut(W, η) = Sp(4,Z). Given v ∈W , let Rv denote the
matrix of the transvection

x 7→ x+ ω(x, v)v

in our basis of W . The level 2 principal congruence subgroup of Sp(4,Z) is generated by
the following set (see e.g. [Tit76]):

{R2
A1
, R2

A2
, R2

B1
, R2

B2
, R2

A1+A2
, R2

B1+B2
, R2

A1+B1
, R2

A1+B2
, R2

A2+B1
, R2

A2+B2
}.

So, it suffices to show that the image of our representation contains all of the above
elements.

First, note that

Ta1Ta3 7→ RA1

Ta2 7→ R2
A2

Tb1Tb3 7→ RB1

Tb2 7→ R2
B2

Observe that RA1 and RB1 together generate SL2(Z)× {I2}, and R2
A2

and R2
B2

generate

{I2}×〈( 1 2
0 1 ) , ( 1 0

2 1 )〉. Moreover, the generator of C2 gives −I4 in the image, hence −I4(−I2⊕
I2) = I2 ⊕ −I2 is also the image, where ⊕ denotes a block diagonal matrix. Thus, the
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image contains SL2(Z)× Γ(2), where Γ(2) is the level 2 principal congruence subgroup of
SL2(Z). This gets us R2

A1+B1
and R2

A2+B2
.

So, it remains to get the “mixed” transvections R2
A1+A2

, R2
A1+B2

, R2
B1+A2

, and R2
B1+B2

.
For a homology class γ ∈ H1(S;Z), let Tγ denote any Dehn twist around a simple closed
curve that represents γ. Now, note that

Ta1+b2Ta3+b2 7→


1 −1 1 0
0 1 0 0
0 0 1 0
0 −1 1 1

 = RA1+B2 ,

Tb1+b2Tb3+b2 7→


1 0 0 0
1 1 1 0
0 0 1 0
1 0 1 1

 = RB1+B2 ,

and

(Ta1+a2Ta3+a2)(Ta1Ta3)(T−1
a2 ) 7→


1 −1 0 −2
0 1 0 0
0 −2 1 −4
0 0 0 1




1 −1 0 0
0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 2
0 0 0 1



=


1 −2 0 −2
0 1 0 0
0 −2 1 −2
0 0 0 1

 = R2
A1+A2

,

(Tb1+a2Tb3+a2)(Tb1Tb3)(T−1
a2 ) 7→


1 0 0 0
1 1 0 −2
2 0 1 −4
0 0 0 1




1 0 0 0
1 1 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 2
0 0 0 1



=


1 0 0 0
2 1 0 −2
2 0 1 −2
0 0 0 1

 = R2
B1+A2

.

So, it suffices to check that the multitwists Ta1+b2Ta3+b2 , Tb1+b2Tb3+b2 , Ta1+a2Ta3+a2 , and
Tb1+a2Tb3+a2 lie in Mod(S)C2 , which is to say that these homology classes are represented
by multicurves which are invariant under C2. We can simply draw these curves; see Figure
3.

Case 3.e.
In this case, G = C3 and S has genus 3. The action of G on S is the order 3 rotation

pictured in Figure 4. Let ai, bi be the standard basis of H1(S;Q). We see that

H1(S;Q) = Q{a1 + a2 + a3, b1 + b2 + b3} ⊕Q(ζ3){a1 − a2, b1 − b2}

where Q is the trivial representation and ζ acts by the generator of C3 (in particular,
1 + c+ c2 acts by 0 on a1 − a2 and b1 − b2). With respect to this basis, we see that the
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Figure 3. Verifying that the desired twists lie in Mod(S)C2 .

Figure 4. The action of C3 in Case 3.e.

Reidemeister pairing on H1(S;Q)Q(ζ3) is 3h, where h is the skew-Hermitian form

h =

(
0 1
−1 0

)
.

In this case the corresponding simple factor is the field Q(ζ3), the involution τ is complex
conjugation, and the field fixed by τ is K = Q(ζ3+ζ−1

3 ) = Q. So, GQ(ζ3)(OK) = GQ(ζ3)(Z) =
U(h;Z[ζ3]). Since the determinant of every B ∈ U(h;Z[ζ3]) is an integer on the unit circle,
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there are only finitely many possible determinants, and so SU(h;Z) = SL2(Z) has finite
index in GQ(ζ3)(Z).

With respect to the above basis, the map Mod(S)C3 → GQ(ζ3) maps

Ta1Ta2Ta3 7→
(

1 −1
0 1

)
Tb1Tb2Tb3 7→

(
1 0
1 1

)
.

Thus, we generate the entire group SL2(Z). In particular, Im(ΦQ(ζ3)) is arithmetic.

Case 3.s.1. In this case G = Q8. Recall from Section 3.2 that for the unique faithful
V ∈ Irr(G), GV = {B ∈ D× | BFB∗ = F} where F ∈M2(Q(i)) and

D =

{(
α β

−β α

)
| α, β ∈ Q(i)

}
.

Note that G1
V := {B ∈ GV | det(B) = 1} is precisely the group SU(2;Q(i)). Since SU(2) is

compact, every discrete subgroup of G1
V is finite. Thus, this case is automatically arithmetic

if we can show that G1
V (Z) has finite index in GV (Z) (this is actually true in more general

cases, see [Gru+15, Proposition 3.9]). This follows as in the previous case. Namely, observe
first that for every B ∈ GV , | det(B)|2 det(F ) = det(F ) and hence |det(B)| = 1. On the
other hand, for every B ∈ GV (Z), det(B) ∈ Z[i]. It follows that det(B) ∈ {±1,±i} for
every B ∈ GV (Z), and hence G1

V (Z) has finite index as desired.

Case 3.ad.2. In this case G = C4 ◦D4. Recall from Section 3.2 that for the unique faithful
V ∈ Irr(G), GV ∼= U(1;Q(i)). Since the group U(1) is compact, this case is automatically
arithmetic.

4. Lifting twists

In the 12 cases that remain (2.k.2, 2.n, 2.s, 3.i.1, 3.m, 3.n, 3.q.2, 3.r.2, 3.s.2, 3.y, 3.z,
and 3.al), the group GV is isomorphic to SL2(Q) or U(1, 1;Q[i]). Since SU(1, 1;Q[i]) is
isomorphic to SL2(Q), we can always map GV (Z) to SL2(Z) (up to commensurability) in
the remaining cases. Given a set of matrices in SL2(Z), one can determine if they generate
a finite index subgroup by computing the intersection with a finite index free subgroup and
applying an algorithm for determining whether a subgroup of a free group has finite index
(see e.g. [KM02]). Thus, if we can explicitly compute elements of Im(ΦV ), it is simple to
check if we have found enough to generate an arithmetic subgroup.

To find elements of Mod(S)G, we can simply lift elements of Mod(S◦/G). However, for
an arbitrary mapping class of S◦/G, it is not easy in general to compute the action of the
lift on H1(S;Q). The simplest elements of Mod(S)G are lifts of powers of Dehn twists,
which we call partial rotations; these elements have a simple geometric description that
allows us to compute their action on H1(S;Q). While there is not an obvious reason to
expect it a priori, it turns out that partial rotations are enough to generate an arithmetic
subgroup in all 12 remaining cases.

To compute the action of a partial rotation, we equip S with a cell structure for which
G acts by cellular maps. However, the partial rotation will not be a cellular map. Instead,
we directly define a map on the cellular chain group ψ : C1(S)→ C1(S) (this map is not
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induced by a map S → S), and we observe that ψ induces a map on homology that agrees
with the action of the partial rotation.

In Section 4.1, we build the cell structure on S and explain how to compute the action
of a partial rotation on H1(S;Q). In Section 4.2, we explain in detail how to determine
whether a finitely generated subgroup of SL2(Z) has finite index. In Section 4.3, we present
a list of partial rotations that generate a finite index subgroup of GV (Z) for each of the
remaining 12 cases. We carry out these computations in SageMath; the code for these
computations is available at [Luc22].

4.1. Computing the action of lifted twists. An equivariant cell structure. Fix a
cover p : S → S/G with monodromy ϕ : π1(S◦/G) → G, and suppose S/G has genus h
and n > 0 branch points x1, . . . , xn. Let N = 2h+ n− 1, so π1(S◦/G) is free of rank N .

Our first step is to build a 2N -gon P with oriented edges e1, . . . , e2N and orientation-
preserving edge pairings so that if we let P be the quotient of P by the edge pairings,
then

(1) P is homeomorphic to S/G, and
(2) the vertices of P map to the branch points of S/G.

We do this is as follows. First, for 1 ≤ i ≤ h, choose simple loops ci and di based at xn
representing the standard generators of π1(S/G). Next, for 1 ≤ i ≤ n− 1, choose arcs αi
from xn to xi. Assuming our loops and arcs intersect only at xn, we can cut along them to
obtain the desired polygon P ; see Figure 5.

Figure 5. Building the polygon P , with h = 1 and n = 3.

The edge pairings partition the edges into pairs E1, . . . , EN . For 1 ≤ i ≤ N , write
Ei = {ei1 , ei2} where i1 < i2, and set E+

i = ei1 and E−i = ei2 . We fix the center point
y ∈ P as the base point of S◦/G. For each edge pair Ei, we build a loop γi on S◦/G based
at y by choosing an arc from y to edge E+

i , and then an arc out of edge E−i back to y.
Together, the loops γi for 1 ≤ i ≤ N form a free basis of π1(S◦/G).

Now, we construct the cell structure on S. Take |G| copies of the polygon P , labeled
Pu for u ∈ G; we call these the sheets of S. We let euj denote the copy of edge ej on the
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sheet Pu. Our goal is to glue the edges of the sheets Pu so that the permutation action
v · Pu = Pvu is precisely the action of G on S. Let yu be the copy of y on Pu; we fix yid
as the base point on S. To get the desired gluing, we need the lift of γi to yu to end at
yuϕ(γi). To achieve this, we simply glue (E+

i )u to (E−i )uϕ(γEi
) for each edge pair Ei. See

Figure 6 for an illustration in Case 2.k.2.

Figure 6. Case 2.k.2. Here G = D3, g = 2, h = 0, n = 4, ϕ(γ1) = s,
ϕ(γ2) = s, and ϕ(γ3) = r. The edge identifications in the cover are given
by numbers.

Thus, we have a cell structure on S so that G acts by cellular maps. In particular, the
action of G on H1(S;Q) can be computed directly from the permutation action on the
edges.

Partial rotations. Fix an oriented simple closed curve δ on P = S◦/G. We assume the
following about δ:

• δ is transverse to the edges of P ,
• δ does not pass through any vertices of P ,
• the base point y ∈ P lies to the left of δ (in particular, δ does not pass through y).

We also fix a simple arc in Int(P )\δ from y to a point y′ ∈ δ; in this way we can view δ as
a well-defined element of π1(S◦/G). If we let y′id denote the copy of y′ on sheet Pid and let

δ̃id be the lift of δ to y′id, then ϕ(δ) is the deck transformation taking y′id to the endpoint

of δ̃id.
Let Tδ denote the left Dehn twist around δ; we may assume that Tδ fixes the base point

y ∈ P . Assume that Tδ lifts to a homeomorphism T̃δ of S which commutes with G; recall
that this occurs if and only if Tδ fixes the monodromy homomorphism ϕ : π1(S◦/G)→ G.

In particular we assume that T̃δ is the lift fixing yid. The lift T̃δ is a partial rotation. This
is a homeomorphism that looks like a fractional Dehn twist around each component of
p−1(δ). We make this precise as follows.



24 TRENT LUCAS

First, observe that G acts on the set of components of p−1(δ), and the subgroup 〈ϕ(δ)〉
is the stabilizer of the component passing through y′id, which we denote Cid. Thus we get
an isomorphism of G-sets

{components of p−1(δ)} ∼= G/〈ϕ(δ)〉,

where Cid corresponds to the coset 〈ϕ(δ)〉. In particular, if we let m denote the order of
〈ϕ(δ)〉 in G, then p−1(δ) has |G|/m components, each containing m lifts of δ.

Now, we can precisely examine the action of T̃δ. Let U ⊆ S be the preimage of the
support of Tδ (so U is an annular neighborhood of each component of p−1(δ)), and let

S× = S\U . On U , the partial rotation T̃δ must act by a (1/m)th rotation on each

component. On S×, T̃δ must act by a deck transformation on each component. To
understand which deck transformations it acts by, we first look at the action around Cid.

Since T̃δ fixes yid and yid lies to the left of Cid, the lift T̃δ in fact fixes the entire component
of S× to the left of Cid. It then must act on the component to the right of Cid by ϕ(δ).
More generally, for every component C of p−1(δ), if we let u〈ϕ(δ)〉 be the corresponding

coset, then T̃δ fixes the component of S× to the left of C and acts on the component of
S× to the right of C by uϕ(δ)u−1.

The action on homology. Computing the action of the partial rotation T̃δ on H1(S;Q)
is not immediate as it is not a cellular map; it acts on the set of vertices but does not act on
the set of edges. Instead, we define a map on the cellular chain group ψ : C1(S)→ C1(S)

which induces a map on H1(S;Q) that agrees with the action of T̃δ. To define ψ, we

examine the arc T̃δ(e) for each edge e on S, and we explain a procedure, independent of

e, to homotope T̃δ(e) rel endpoints into the 1-skeleton of S. This gives us a consistent

way, for each edge e, to write T̃δ(e) as a signed sum of edges; we define ψ(e) to be this
signed sum. Note that ψ is not induced by a map S → S; in particular, we are not simply

homotoping T̃δ to a cellular map. However, ψ still induces a map on homology, as we check
in Lemma 4.1 below.

We can understand the arc T̃δ(e) informally using our geometric description of T̃δ. To

draw T̃δ(e), we start at the initial vertex of e and head towards the terminal vertex. Every
time we run into p−1(δ), we follow it to the left for one lift of δ, and then continue on a
copy of e on a different sheet. We continue this process until we reach the terminal vertex

of some copy of e. If T̃δ fixes the component of S× containing the intial vertex of e, then
we are done. If it acts on this component by u ∈ G, then the arc we have currently drawn

is u−1T̃δ(e), so we finish by applying the deck transformation u to our arc.
Now, we can adapt this geometric description to define ψ. Fix an edge euj on S. Let

δ ∩ ej = {z1, . . . , zk}, ordered by distance from the intial vertex of ej (it is possible that
this set is empty). Then for each v ∈ G, we can write

p−1(δ) ∩ evj = {zv1 , . . . , zvk}.

First, we let δ̃1 be the lift of either δ to δ−1 to zu1 ; we choose δ if î(ej , δ) is positive at z1,
and choose δ−1 otherwise (i.e. we want our lift to follow p−1(δ) “to the left”). Inductively,

for 1 ≤ i < k, let ui ∈ G be the element such that δ̃i ends at zuii ∈ e
ui
j , and we let δ̃i+1 be

the lift of either δ or δ−1 to zuii+1 depending on whether î(ej , δ) is positive or negative at

zi+1. The arc T̃δ(e
u
j ) is then obtained by joining the intial vertex of euj to the initial vertex
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of δ̃1, joining the terminal vertex of δ̃i to the initial vertex of δ̃i+1 for 1 ≤ i < k, and joining

the terminal vertex of δ̃k to the terminal vertex of eukj . See Figure 7 for an illustration of

T̃ 2
δ (euj ) in Case 2.k.2 (for a kth power of a twist, we take δ̃i to be a lift of δ±k).

Figure 7. Example of a curve δ and the arc T̃ 2
δ (eid3 ) in Case 2.k.2. Here δ̃1

is a lift of δ2, and δ̃2 is a lift of δ−2. Both lifts happen to end on the same
sheet where they started. Note that some overlap occurs on edge eid3 ; in
the illustration we slightly perturb the arcs for clarity.

Now, we homotope each δ̃i into the 1-skeleton of S in two stages:

(1) For each edge e that δ̃i passes through, we push δ̃i down e so that it passes through

the initial vertex of e. Now on each sheet, δ̃i is union of arcs whose endpoints are
vertices.

(2) On each sheet, we push each arc of δ̃i onto the boundary so that it traverses the
boundary clockwise.

These homotoped arcs, together with the full edge e
uk+1

j , are homotopic rel endpoints to

the arc T̃δ(e
u
j ). We illustrate these steps in Figure 8.

This procedure gives us a well-defined way to represent each δ̃i as a signed sum of edges,
and hence as an element of C1(S). In particular, if we let bvi` denote the number of times

that the homotoped version of δ̃i traverses the edge ev` , counted with sign depending on

whether the orientations agree, then δ̃i is represented by the element∑
v∈G

2N∑
`=1

bvi`e
v
` ∈ C1(S).

Finally, recall that T̃δ acts on the component of S× containing the initial vertex of euj by
some deck transformation w ∈ G. As explained above, w will either be the identity or a
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Figure 8. Implementing steps 1 and 2 of the homotopy in Case 2.k.2.
After the second step, the arcs lie on the 1-skeleton, but we draw them
parallel to the 1-skeleton for clarity.

conjugate of ϕ(δ), depending on whether the initial vertex of euj lies to the left or right of

p−1(δ). In either case, we define

ψ(euj ) = w(δ̃1 + · · ·+ δ̃k + e
uk+1

j ).
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Now, we can verify that ψ gives us the desired map on homology.

Lemma 4.1. The map ψ : C1(S)→ C1(S) induces a map on H1(S;Q) that agrees with

the map induced by T̃δ.

Proof. Let ∂1 : C1(S)→ C0(S) and ∂2 : C2(S)→ C1(S) be the boundary maps. First, we
check that ψ preserves Ker(∂1). This follows since for every edge e, ∂1(ψ(e)) is the (signed)

endpoints of T̃δ(e), so ∂1 ◦ ψ = (T̃δ)∗ ◦ ∂1. Next, we check that ψ preserves Im(∂2). Note
that Im(∂2) is generated by the face relations ∂2Pu =

∑
1≤j≤2N εje

u
j for each u ∈ G, where

εj = +1 if euj is oriented counterclockwise and εj = −euj if euj is oriented clockwise. Let

∂Pu be the corresponding simple closed curve on S. Then T̃δ(∂Pu) is a null-homotopic
simple closed curve, comprised of arcs between the vertices of S. Since we can homotope

T̃δ(∂Pu) rel the vertices into the 1-skeleton to obtain the element ψ(∂2Pu) ∈ C1(S), we
conclude that ψ preserves Im(∂2). Thus, ψ indeed induces a map on H1(S;Q). The fact

that the induced map agrees with T̃δ follows by construction. �

As noted above, we can easily modify the definition of ψ to compute the action of a lift

of T kδ . Namely, take δ̃i to be a lift of δ±k, rather than just a lift of δ±1.

Lifting curves combinatorially. Note that the curve δ can be represented by a sequence
of oriented simple arcs β1, . . . , β` joining the sides of P . The definition of ψ depends only
on the following data:

(1) the order of the βi,
(2) the edge that each βi enters,
(3) for each edge e of P , the order that the βi intersect e from the initial vertex to the

terminal vertex.

So we can represent each βi as a pair (ei, ki) where ei is the edge that βi enters and ki is
an integer representing the order of βi ∩ ei in δ ∩ ei, and we can represent δ as the ordered
list ((e1, k1), . . . , (e`, k`)).

We can compute lifts of δ±1 from this purely combinatorial data as follows. Suppose
βi enters the edge ei at the point z. Let zu be the copy of z on the sheet Pu. Assume
first that î(ei, βi) is positive at z. Then to lift δ to zu, we simply lift each arc in the
order βi+1, βi+2, . . . , β`, β1, β2, . . . , βi. In particular, we lift βi+1 to the sheet glued to
edge eui , lift βi+2 to the sheet glued to the endpoint of the lift of βi+1, etc. If î(ei, βi) is
negative at z, then we lift δ−1 in the analogous way, except we lift the arcs in the order
βi, βi−1, . . . , β1, β`, β`−1, . . . , βi+1. In either case, the lifted arcs are again determined by
the edge they enter and order that intersect that edge. To represent the lift of δ±1 as an

element of C1(S), we simply take, for each lifted arc β̃i, the clockwise sequence of edges

between the initial vertices of the edge where β̃i starts and the edge where β̃i ends.

4.2. Checking finite index. Now, given a finitely generated subgroup ∆ ⊆ PSL2(Z),
we outline a procedure to determine whether ∆ has finite index (and hence we get such
a procedure for SL2(Z)). The idea is to exploit the fact that the the level 2 principal
congruence subgroup Γ(2) is freely generated by the matrices ( 1 2

0 1 ) and ( 1 0
2 1 ). Our procedure

goes as follows:

(1) Compute a generating set of ∆ ∩ Γ(2) using Schreier’s lemma.
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Fix a generating set T ⊆ ∆. Let ∆′ = ∆ ∩ Γ(2), and fix a right transversal R of
∆′ in ∆, i.e. a set of representatives of the right cosets ∆′\∆. Given δ ∈ ∆, let δ
denote the fixed representative of the coset containing δ. Then Schreier’s lemma
says that ∆′ is generated by the set

{rt
(
rt
)−1 | r ∈ R, t ∈ T}.

If we let ∆ denote the image of ∆ in PSL(2,Z/2Z), then finding the transversal
R amounts to finding one element in each fiber over ∆. In particular this can be
done by simply iterating over all words in the generating set T .

(2) Express each generator of ∆∩Γ(2) as a word in ( 1 2
0 1 ) and ( 1 0

2 1 ) using the algorithm
given by Chorna, Geller, and Shpilrain in [CGS17].

Given a matrix M = (mij) ∈ Γ(2), we call
∑

ij |mij | the size of M . In [CGS17,

Theorem 4], the authors prove that one can always reduce the size of M by left or

right multiplication by ( 1 2
0 1 )

±1
or ( 1 0

2 1 )
±1

. Repeating this process inductively, it
will eventually terminate at the identity matrix, presenting M as a word in our
free generators.

(3) Compute the index of ∆ ∩ Γ(2) in Γ(2).

Once our generators of ∆ ∩ Γ(2) are written as words in ( 1 2
0 1 ) and ( 1 0

2 1 ), we apply
the Todd-Coxeter procedure to compute the index (see e.g. [HEO05, Ch. 5]). We
perform this calculation using the implementation of the Todd-Coxeter procedure
in GAP [GAP22].

4.3. Results. As mentioned above, we finish the proof of Theorem 1.2 by computing the
action of several partial rotations in the remaining 12 cases. In particular, for each case we
carry out the following steps:

(1) Build the homology group H1(S;Q) using the cell structure described above.
(2) Find a set of simple closed curves on S◦/G for which we can lift a power of each

each Dehn twist to a partial rotation.
(3) Compute the action of each partial rotation on H1(S;Q) using the algorithm

described above.
(4) Apply a change of basis to obtain a set of matrices in SL2(Z).
(5) Check that these generate a finite index subgroup of SL2(Z) using the procedure

defined above.

In Table 2, we provide, for each case, a set of pairs (δ, k) so that the set of partial rotations

T̃ kδ generate a finite index subgroup of GV (Z). Each such set was found experimentally. In
the table, we write each curve δ as an element of π1(S◦/G) using our standard presentation

〈c1, d1, . . . , ch, dh, x1, . . . , xn | [c1, d1] · · · [ch, dh]x1 · · ·xn = 1〉.
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Case G Branching data Monodromy Partial rotations

2.k.2 D3 (22, 32) (s, s, r, r−1)
(x1x2, 1),
(x1x2x3x

−1
2 , 2),

(x2x3, 2)

2.n D4 (23, 4) (s, sr, r2, r)
(x1x2x3x

−1
2 , 1),

(x2x3, 1),
(x1x2, 2)

2.s D6 (23, 3) (s, sr, r3, r2)
(x1x2x3x

−1
2 , 1),

(x2x3, 1),
(x1x2, 3)

3.i.1 C4 (1; 22) (c, 1, c2, c2)
(d1, 1),
(c2

1d1x1, 2)

3.m D3 (24, 3) (s, s, s, sr−1, r)

(x1x2, 1),
(x1x2x3x

−1
2 , 1),

(x2x3, 1),
(x1x2x3x4x

−1
3 x−1

2 , 3),

(x2x3x4x
−1
3 , 3),

(x3x4, 3)

3.n D3 (1; 3) (s, sr, r)
(c1, 2),
(d1, 2)

3.q.2 D4 (22, 42) (s, s, r−1, r)
(x1x2, 1),
(x1x2x3x

−1
2 , 2),

(x2x3, 2)

3.r.2 D4 (25) (s, s, sr, sr3, r2)

(x1x2, 2),
(x3x4, 2), (x2x3x4, 2),
(x3x4x1, 2),
(x3x1x2, 2),
(x1x2x3, 2)

3.s.2 D4 (1; 2) (s, sr, r2)
(c1, 2),
(d1, 2)

3.y D6 (23, 6) (s, sr2, r3, r)
(x1x2x3x

−1
2 , 1),

(x2x3, 1),
(x1x2, 3)

3.z A4 (22, 32) ((12)(34), (12)(34), (123), (321))
(x1x2, 1),
(x1x2x3x

−1
2 , 3),

(x2x3, 3)

3.al S4 (23, 3) ((12), (23), (13)(24), (243))
(x1x2x3x

−1
2 , 1),

(x2x3, 2),
(x1x2, 3)

Table 2. A set of partial rotations generating an arithmetic subgroup in
the 12 remaining cases.
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